HIGHLIGHTS OF PRESCRIP These highlights do not include all the information needed to n Hydrochloride for Injection, USP safely and effectively. See full prescribing information for Ondansetron Hydrochloride Injection USP

etron Hydrochloride Injection, USP for intravenous use Initial U.S. Approval: 1991

-----BECENT MAJOB CHANGES----

Chemotherapy - Removal of of 32 mg single intraveious dose (2.1) Warnings and Precautions, QT Prolongation (5.2) 11/2012

-----INDICATIONS AND USAGE-----

- Ondansetron injection is a 5-HT3 receptor antagonist indicated:
- epeat courses of emetogenic cancer chemotherapy. (1.1)
- Prevention of postoperative nausea and/or vomiting. (1.2) -----DOSAGE AND ADMINISTRATION ----Prevention of nausea and vomiting associated with initial and

repeat courses of emetogenic cancer chemotherapy (2.1): Adults and Pediatric patients (6 months to 18 years): Three

0.15 mg/kg doses, up to a maximum of 16 mg per dose infused intravenously over 15 minutes. The first dose should be administered 30 minutes before the start of chemotherapy. Subsequent doses are administered 4 and 8 hours after the firet dose

Prevention of postoperative nausea and/or vomiting (2.2):

Population	Age	Ondansetron Injection Dosage	Intravenous Infusion Rate
Adults	>12 yrs	4 mg x 1	over 2 - 5 min
Pediatrics (>40 kg)	1 mo 12 yrs	4 mg x 1	over 2 - 5 min
Pediatrics (≤40 kg)	1 mo 12 yrs	0.1 mg/kg x 1	Over 2 - 5 min

In patients with severe hepatic impairment, a total daily dose of See 17 for PATIENT COUNSELING INFORMATION 8 mg should not be exceeded. (2.4)

FULL PRESCRIBING INFORMATION: CONTENTS*

1 INDICATIONS AND USAGE

- 1.1 Prevention of Nausea and Vomiting Associated with 8 USE IN SPECIFIC POPULATIONS Initial and Repeat Courses of Emetogenic Cancer Chemotherapy
- 1.2 Prevention of Postoperative Nausea and/or Vomiting 2 DOSAGE AND ADMINISTRATION
- Prevention of Nausea and Vomiting Associated with Initial and Repeat Courses of Emetogenic Chemotherapy
- 2.2 Prevention of Postoperative Nausea and Vomiting
- 2.3 Stability and Handling
- 2.4 Dosage Adjustment for Patients with Impaired Hepatic 10 OVERDOSAGE
- 3 DOSAGE FORMS AND STRENGTHS
- 5 WARNINGS AND PRECAUTIONS
- Hypersensitivity Reactions
- 5.2 QT Prolongation
- 5.3 Masking of Progressive Ileus and Gastric Distension
- 5.4 Effect on Peristalsis
- 6 ADVERSE REACTIONS 6.1 Clinical Trials Experience 6.2 Postmarketing Experience
- 7 DRUG INTERACTIONS
- 7.1 Drugs Affecting Cytochrome P-450 Enzymes
- 7.2 Apomorphine
- 7.3 Phenytoin, Carbamazepine, and Rifampin
- 7.4 Tramadol
- 7.5 Chemotherapy

FULL PRESCRIBING INFORMATION

_ _ _ _ _

INDICATIONS AND USAGE

1.1 Prevention of Nausea and Vomiting Associated with Initial and Repeat Courses of Emetogenic Cancer Chemotherapy

Ondansetron is indicated for the prevention of nausea and vomiting associated with initial and repeat courses of emetogenic cancer chemotherapy, including high-dose cisplatin [see Clinical Studies (14.1)]. Ondansetron is approved for patients aged 6 months and older.

1.2 Prevention of Postoperative Nausea and/or Vomiting

Ondansetron Injection is indicated for the prevention of postoperative nausea and/or vomiting. As with other antiemetics, routine prophylaxis is not recommended for patients in whom there is little expectation that nausea and/or vomiting will occur postoperatively. In patients in whom nausea and/or vomiting must be avoided postoperatively, ondansetron is recommended even when the incidence of postoperative nausea and/or vomiting is low. For patients who do not receive prophylactic ondansetron and perience nausea and/or vomiting postoperatively, Ondansetron Injection may be given to prevent further episodes [see Clinical Studies (14.3)].

Ondansetron is approved for patients aged 1 month and older.

DOSAGE AND ADMINISTRATION

3073

2.1 Prevention of Nausea and Vomiting Associated with Initial and Repeat Courses of Emetogenic Chemotherapy Ondansetron Injection should be diluted in 50 mL of 5% Dextrose Injection or 0.9% Sodium Chloride Injection before administration.

> Dimension: 480 x 300 mm Rev.: 1; Ver.: 5; Dt.: 08.02.13

Adults: The recommended adult intravenous dosage of ondansetron is three 0.15-mg/kg doses up to a maximum of 16 mg pe dose [see Clinical Pharmacology (12.2)]. The first dose is infused over 15 minutes beginning 30 minutes before the start of emetogenic chemotherapy. Subsequent doses (0.15 mg/kg up to a maximum of 16 mg per dose) are administered 4 and 8 hours after the first dose of ondansetro

Pediatrics: For pediatric patients 6 months through 18 years of age, the intravenous dosage of ondansetron is three 0.15-mg/kg doses up to a maximum of 16 mg per dose [see Clinical Studies (14.1) and Clinical Pharmacology (12.2 and 12.3)].

----- DOSAGE FORMS AND STRENGTHS -nsetron Injection (2 mg/mL): 2 mL single dose vial and 20 mL multidose vials. (3)

- -----CONTRAINDICATIONS-Patients known to have hypersensitivity (e.g., anaphylaxis) to
- this product or any of its components. (4) Concomitant use of apomorphine, (4)

---WARNINGS AND PRECAUTIONS -

- Dosage and Administration, Prevention of Nausea and 11/2012 Hypersensitivity reactions including anaphylaxis and bronchospasm, have been reported in patients who have exhibited hypersensitivity to other selective 5-HT3 receptor antagonists. (5.1)
 - QT prolongation occurs in a dose-dependent manner. Cases of Torsade de Pointes have been reported. Avoid ondansetron in patients with congenital long QT syndrome. (5.2)
- Prevention of nausea and vomiting associated with initial and
 Use in patients following abdominal surgery or in patients with chemotherapy-induced nausea and vor . mask a progressive ileus and/or gastric distention. (5.3)(5.4)

.....ADVERSE REACTIONS Chemotherapy-Induced Nausea and Vomiting

- The most common adverse reactions (\geq 7%) in adults are diarrhea, headache, and fever. (6.1)
- Postoperative Nausea and Vomiting -
- The most common adverse reaction (>10%) which occurs at a higher frequency compared to placebo in adults is headache. (61)
- The most common adverse reaction (≥2%) which occurs at a
- higher frequency compared to placebo in pediatric patients 1 to 24 months of age is diarrhea (6.1) To report SUSPECTED ADVERSE REACTIONS, contact Pfizer at 1-800-438-1985 or FDA at 1-800-FDA-1088 or www.fda.gov
- medwatch. --- DRUG INTERACTIONS----- Apomorphine - profound hypotension and loss of consciousness. Concomitant use with ondansetron is contraindicated (7.2)
- Revised: 11/2012
- 7.6 Temazenam 7.7 Alfentanil and Atracurium
- 8.1 Pregnancy 8.3 Nursing Mothers
- 8.4 Pediatric Use
- 8.5 Geriatric Use 8.6 Hepatic Impairment
- 8.7 Renal Impairment

9 DRUG ABUSE AND DEPENDENCE

- 11 DESCRIPTION
- 12 CLINICAL PHARMACOLOGY 12.1 Mechanism of Actio
- 12.2 Pharmacodynamics 12.3 Pharmacokinetics
- 13 NONCLINICAL TOXICOLOGY 13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility
- 14 CLINICAL STUDIES 14.1 Chemotherapy-Induced Nausea and Vomiting
- 14.2 Prevention of Postoperative Nausea and/or Vomiting 14.3 Prevention of Further Postoperative Nausea and Vomitina

16 HOW SUPPLIED/STORAGE AND HANDLING 17 PATIENT COUNSELING INFORMATION

*Sections or subsections omitted from the full prescribing information are not listed

_ _ _ _ _

The first dose is to be administered 30 minutes before the start of moderately to highly emetogenic chemotherany. Subsequent doses (0.15 mg/kg up to a maximum of 16 mg per dose) are administered 4 and 8 hours after the first dose of ondansetron. The drug should be infused intravenously over 15 minutes.

Cold Sensation

ruritus

Paresthesia

Postmarketing Experience

Lower Respiratory: Hiccups

after intravenous infusion

DBUG INTERACTIONS

controlled administration (PCA) of tramadol.

Skin: Urticaria

7.1

7 2 Anomorphine

7.4 Tramadol

7.6 Temazepam

Pregnancy

Nursing Mothers

8.4 Pediatric Use

Geriatric Use

Hepatic Impairment

DRUG ABUSE AND DEPENDENCE

in direct addiction studies

8.7 Renal Impairment

OVERDOSAGE

Alfentanil and Atracurium

USE IN SPECIFIC POPULATIONS

this drug be closely monitored. [See Clinical Pharmacology (12.3)].

7.7

8.1

8.3

8.5

9

10

6.2

comitant perioperative and postoperative medications

frequency of reporting, or potential causal connection to ondansetron.

Local Reactions: Pain, redness, and burning at site of injection.

associated with abnormalities of accommodation, has also been reported.

2.2 Prevention of Postoperative Nausea and Vomiting

Ondansetron Injection should not be mixed with solutions for which physical and chemical compatibility have not been established. In particular, this applies to alkaline solutions as a precipitate may form.

Adults: The recommended adult intravenous dosage of ondansetron is 4 mg undiluted administered intravenously in not less than 30 seconds, preferably over 2 to 5 minutes, immediately before induction of anesthesia, or postoperatively if the patient did not so seconds, pretention of a finite data in the second of the second seco patients weighing more than 40 kg, few patients above 80 kg have been studied. In patients who do not achieve adequate control administration of a second intravenous dose of 4 mg ondansetron postoperatively does not provide additional control of nausea and vomiting

Pediatrics: For pediatric patients 1 month through 12 years of age, the dosage is a single 0.1-mg/kg dose for patients weighing 40 kg or less, or a single 4-mg dose for patients weighing more than 40 kg. The rate of administration should not be less than 30 seconds, preferably over 2 to 5 minutes immediately prior to or following anesthesia induction, or postoperatively if the patient did not receive prophylactic antiemetics and experiences nausea and/or vomiting occurring shortly after surgery. Prevention of further nausea and vomiting was only studied in patients who had not received prophylactic ondansetro

Stability and Handling

2.3

3

After dilution, do not use beyond 24 hours. Although ondansetron injection is chemically and physically stable when diluted as recommended, sterile precautions should be observed because diluents generally do not contain preservative. Ondansetron Injection is stable at room temperature under normal lighting conditions for 48 hours after dilution with the following

intravenous fluids: 0.9% Sodium Chloride Injection, 5% Dextrose Injection, 5% Dextrose and 0.9% Sodium Chloride Injection, 5% Dextrose and 0.45% Sodium Chloride Injection, and 3% Sodium Chloride Injection. Note: Parenteral drug products should be inspected visually for particulate matter and discoloration before administration

vhenever solution and container permit. Precaution: Occasionally, ondansetron precipitates at the stopper/vial interface in vials stored upright. Potency and safety are not

affected. If a precipitate is observed, resolubilize by shaking the vial vigorously. Dosage Adjustment for Patients with Impaired Henatic Function

24

In patients with severe heatic impairment (Child-Pugh score of 10 or greater), a single maximal daily dose of 8 mg infused over 15 minutes beginning 30 minutes before the start of the emetogenic chemotherapy is recommended. There is no experience beyond first-day administration of ondansetron in these patients [see Clinical Pharmacology (12.3)].

DOSAGE FORMS AND STRENGTHS

Ondansetron Injection, 2 mg/mL is a clear, colorless, nonpyrogenic, sterile solution available as a 2 mL single dose vial and 20 mL multidose vial.

CONTRAINDICATIONS

Ondansetron Injection is contraindicated for patients known to have hypersensitivity (e.g., anaphylaxis) to this product or any of ts components. Anaphylactic reactions have been reported in patients taking ondansetron. [See Adverse Reactions (6.2)]. The concomitant use of appmorphine with ondansetron is contraindicated based on reports of profound hypotension and loss of consciousness when apomorphine was administered with ondansetron.

WARNINGS AND PRECAUTIONS

5.1 Hypersensitivity Reactions

5.3 Masking of Progressive Ileus and Gastric Distension

Chemotherapy-Induced Nausea and Vomiting:

Ondansetron, and rare cases of grand mal seizure.

Other: Rare cases of hypokalemia have been reported.

at a dosage of 4 mg intravenous over 2 to 5 minutes in clinical trials.

Hypersensitivity reactions, including anaphylaxis and bronchospasm, have been reported in patients who have exhibited 7.3 Phenytoin, Carbamazenine, and Rifampin rsensitivity to other selective 5-HT3 receptor antagonists.

ondanserun protongs ine de minerva in a obserdependent manier (see climical managory (12.2.). In automor, post-marketing cases of Torsake de Pointes have been reported in patients using ondansetron. Avoid ondansetron in patients with congenital long QT syndrome. ECG monitoring is recommended in patients with electrolyte abnormalities (e.g., hypokalemia

or hypomagnesemia), congestive heart failure, bradvarrhythmias, or patients taking other medicinal products that lead to QT

Indansetron is not a drug that stimulates gastric or intestinal peristalsis. It should not be used instead of nasogastric suction.

Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a

drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in clinical

The following adverse reactions have been reported in clinical trials of adult patients treated with ondansetron across a range of

Cardiovascular: Bare cases of anoina (chest pain), electrocardiographic alterations, hypotension, and tachycardia have been

Hepatic: In comparative trials in cisplatin chemotherapy patients with normal baseline values of aspartate transaminase (AST) and

Incomparison of the second sec

Postoperative Nausea and Vomiting: The adverse reactions in Table 2 have been reported in >2% of adults receiving ondansetron

Table 2. Adverse Reactions Reported in $\geq 2\%$ (and With Greater Frequency than the Placebo Group)

of Adult Patients Receiving Ondansetron at a Dosage of 4 mg Intravenous over 2 to 5 Minutes Ondansetron Injection 4 mg Intravenous

n-547

92 (17%)

44 (8%)

21 (4%)

10 (2%)

Reurological: There have been rare reports consistent with, but not diagnostic of, extrapyramidal reactions in patients receiving 8.6

Table 1. Adverse Reactions Reported in > 5% of Adult Patients Who Received Ondansetron at

a Dosage of Three 0.15-mg/kg Doses

Ondansetron Injection

0.15 mg/kg x 3 n = 419

16%

17%

8%

Integumentary: Rash has occurred in approximately 1% of patients receiving ondansetron

Gastrointestinal: Constipation has been reported in 11% of chemotherapy patients receiving multiday ondansetron

transient elevations in transaminase values occurred in some courses, but symptomatic hepatic disease did not occur

dosages. A causal relationship to therapy with Ondansetron was unclear in many cases.

The use of ondansetron in patients following abdominal surgery or in patients with chemotherapy-induced nausea and vomiting may mask a progressive ileus and gastric distention.

Number of Adult Patients With Reaction

Metoclopramide

n = 156

44%

7%

5%

Placebo

n = 34

18%

15%

3%

Placebo

n=547 patients

77 (14%)

37 (7%)

18 (3%)

6 (1%)

5.2 QT Prolongation Indansetron prolonos the OT interval in a dose-dependent manner *[see Clinical Pharmacology (12.2)]* In addition post-

5.4 Effect on Peristalsis

6 ADVERSE REACTIONS

6.1 Clinical Trials Experience

verse Reactio

Adverse Reaction a.b

Drowsiness/sedation

Injection site reaction

Headache

Fever

Diarrhea

leadache

8 (1%)
3 (<1%)
2(<1%)

9 (2%)

9 (2%)

9 (2%)

Adverse Reactions: Rates of these reactions were not significantly different in the ondansetron and placebo groups

Patients were receiving multiple concomitant perioperative and postoperative medications Pediatric lise: Bates of adverse reactions were similar in both the ondansetron and placeho groups in pediatric patients receiving

remains use rates of adverse reactions were similar in both the industrient and placebo groups in pediatric patients receiving ondansertor (a single 0.1-mg/kg dose for pediatric patients weighing 40 kg or less, or 4 mg for pediatric patients weighing more than 40 kg) administered intravenously over at least 30 seconds. Diarrhea was seen more frequently in patients taking ondansetron (2%) compared to placebo (<1%) in the 1 month to 24 month age group. These patients were receiving multiple

The following adverse reactions have been identified during post-approval use of ondansetron. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure. The reactions have been chosen for inclusion due to a combination of their seriousness

Cardiovascular: Arrhythmias (including ventricular and supraventricular tachycardia, premature ventricular contractions, and atrial fibilitation), bradycardia, electrocardiographic alterations (including second-degree heart block, 0T/QTc interval prolongation, and ST segment depression), palpitations, and syncope. Rarely and predominantly with intravenous ondansetron, transient ECG changes including QT/QTc interval prolongation have been reported *[see Warnings and Precautions (5.2)]*.

General: Flushing. Rare cases of hypersensitivity reactions, sometimes severe (e.g., anaphylatic reactions, angioede bronchospasm, cardiopulmonary arrest, hypotension, laryngeal edema, laryngospasm, shock, shortness of breath, stridor) have also been reported. A positive lymphocyte transformation test to ondansetron has been reported, which suggests immunologic

Hepatobiliary: Liver enzyme abnormalities have been reported. Liver failure and death have been reported in patients with cancer receiving concurrent medications including potentially hepatotoxic cytotoxic chemotherapy and antibiotics.

Neurological: Oculogyric crisis, appearing alone, as well as with other dystonic reactions. Transient dizziness during or shortly

Eye Disorders: Cases of transient blindness, predominantly during intravenous administration, have been reported. These cases of transient blindness were reported to resolve within a few minutes up to 48 hours. Transient blurred vision, in some cases

Drugs Affecting Cytochrome P-450 Enzymes Ondansetron does not appear to induce or inhibit the cytochrome P-450 drug-metabolizing enzyme system of the liver. Because ondansetron is metabolized by hepatic cytochrome P-450 drug-metabolizing enzymes (CYP3A4, CYP2D6, CYP1A2), inducers (12.3). On the basis of limited available data, no dosage adjustment is recommended for patients on these drugs.

Appoint properties of profound hypotension and loss of consciousness when apomorphine was administered with ondansetron, the concomitant use of apomorphine with ondansetron is contradindicated [see Contraindications (4)].

In patients treated with potent inducers of CYP3A4 (i.e., phenytoin, carbamazepine, and rifampin), the clearance of ondanset was significantly increased and ondansetron blood concentrations were decreased. However, on the basis of available data, no 12.3 Pharmacokinetics dosage adjustment for ondansetron is recommended for patients on these drugs [see Clinical Pharmacology (12.3)].

Although there are no data on pharmacokinetic drug interactions between ondansetron and tramadol, data from two small studies indicate that concomitant use of ondansetron may result in reduced analgesic activity of transition. Journal activity of analytic on comitant on concentration of the second seco

In humans, carmustine, etoposide, and cisplatin do not affect the pharmacokinetics of ondansetron

In a crossover study in 76 pediatric patients, intravenous ondansetron did not increase blood levels of high-dose methotrexate

The coadministration of ondansetron had no effect on the pharmacokinetics and pharmacodynamics of temazepam

Ondansetron does not alter the respiratory depressant effects produced by alternanil or the degree of neuromuscular blockade produced by atracurium. Interactions with general or local anesthetics have not been studied.

Pregnancy Category B. Reproduction studies have been performed in pregnant rats and rabbits at intravenous doses up to A mg/kg per day (approximately 1.4 and 2.9 times the recommended human intravenous does of 0.15 mg/kg given three times a day, respectively, based on body surface area) and have revealed no evidence of impaired fertility or harm to the fetus due to ondansetron. There are, however, no adequate and well-controlled studies in pregnant women. Because animal reproduction studies are not always predictive of human response, this drug should be used during pregnancy only if clearly needed

Ondansetron is excreted in the breast milk of rats. It is not known whether ondansetron is excreted in human milk. Because many drugs are excreted in human milk, caution should be exercised when ondansetron is administered to a nursing woman

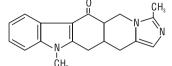
Little information is available about the use of ondansetron in pediatric surgical patients younger than 1 month of age **Exercision Studies (14.2)**. Little information is available about the use of ondansetr than 6 months of age. [See Clinical Studies(14.1) and Dosage and Administration (2)]. setron in pediatric cancer patients younge

The clearance of ondansetron in pediatric patients 1 month to 4 months of age is slower and the half-life is ~2.5 fold longer than patients who are > 4 to 24 months of age. As a precaution, it is recommended that patients less than 4 months of age receiving

Of the total number of subjects enrolled in cancer chemotherapy-induced and postoperative nausea and vomiting in US- and foreign-controlled clinical trials, 862 were 65 years of age and over. No overall differences in safety or effectiveness were observed between these subjects and younger patients, but greater sensitivity of some older individuals cannot be ruled out. Dosage adjustment is not needed in patients over the age of 65 [see Clinical Pharmacology (12.3)].

In patients with severe hepatic impairment (Child-Pugh score of 10 or greater), clearance is reduced and apparent volume of distribution is increased with a resultant increase in plasma half-life [see Clinical Pharmacology (12.3)]. In such patients, a total daily dose of 8 mg should not be exceeded [see Dosage and Administration (2.3)].

Although plasma clearance is reduced in patients with severe renal impairment (creatinine clearance < 30 mL/min), no dosage adjustment is recommended [see Clinical Pharmacology (12.3)].


Animal studies have shown that ondansetron is not discriminated as a benzodiazepine nor does it substitute for benzodiazepines

There is no specific antidote for ondansetron overdose. Patients should be managed with appropriate supportive therapy Individual intravenous doses as large as 150 mg and total daily intravenous doses as large as 252 mg have been inadvertently administered without significant adverse events. These doses are more than 10 times the rec

In addition to the adverse reactions listed above, the following events have been described in the setting of ondansetror overdose: "Sudden blindness" (amaurosis) of 2 to 3 minutes' duration plus severe constipation occurred in one patient that was administered 72 mg of ondansetron intravenously as a single dose. Hypotension (and faintness) occurred in another patient that took 48 mg of ondansetron hydrochloride tablets. Following infusion of 32 mg over only a 4-minute period, a vasovagal episode with transient second-degree heart block was observed. In all instances, the events resolved completely.

DESCRIPTION

The active ingredient is Ondansetron Injection USP is ondansetron hydrochloride, the selective blocking agent of the serotonin The active ingredients of material of the second of the second of the second of the second agent of the second of

The empirical formula is C10H,0N,0+HCl+2H,0, representing a molecular weight of 365.9. Ondansetron HCI is a white to off-white powder that is soluble in water and normal saline.

Sterile Injection for Intravenous (I.V.) or Intramuscular (I.M.) Administration

Each 1 mL of aqueous solution in the 2 mL single-dose vial contains Active: ondansetron 2 mg as ondansetron hydrochloride dihydrate; Inactives: sodium chloride 9.0 mg, USP; citric acid monohydrate 0.5 mg, USP; 0.25 mg sodium citrate dihydrate, USP and Water for Injection, USP g.s.

Each 1 mL of aqueous solution in the 20 mL multidose vial contains **Active**: ondansetron 2 mg as ondansetron hydrochloride dihydrate; Preservatives: methylparaben 1.2 mg, NF and propylparaben 0.15 mg, NF; **Inactives**: sodium chloride 8.3 mg, USP; citric acid monohydrate 0.5 mg, USP; sodium citrate dihydrate 0.25 mg, USP and Water for Injection, USP g.s. Ondansetron Injection is a clear, colorless, nonpyrogenic, sterile solution. The pH of the injection solution is 3.3 to 4.0

12 CLINICAL PHARMACOLOGY 12.1 Mechanism of Action

Ondansetron is a selective 5-HT3 receptor antagonist. While ondansetron's mechanism of action has not been fully characterized, it is not a dopamine-receptor antagonist

12.2 Pharmacodynamics

ATC interval prolongation was studied in a double blind, single intravenous dose, placebo- and positive-controlled, crossover -study in 58 healthy subjects. The maximum mean (95% upper confidence bound) difference in QTcF from placebo after baseline-correction was 19.5 (21.8) ms and 5.6 (7.4) ms after 15 minute intravenous infusions of 32 mg and 8 mg ondansetron. respectively. A significant exposure-response relationship was identified between ondansetron concentration and $\Delta\Delta\Omega$ TcF. Using — the established exposure-response relationship, 24 mg infused intravenously over 15 min had a mean predicted (95% upper — prediction interval) $\Delta\Delta\Omega$ TcF of 14.0 (16.3) ms. In contrast, 16 mg infused intravenously over 15 min using the same model had a mean predicted (95% upper prediction interval) $\Delta\Delta$ QTcF of 9.1 (11.2) ms.

In normal volunteers, single intravenous doses of 0.15 mg/kg of ondansetron had no effect on esophageal motility, gastri a 16-mg dose infused over 5 minutes showed no effect of the drug on cardiac output, heart rate, stroke volume, blood pressure, or electrocardiogram (ECG). Multiday administration of ondansetron has been shown to slow colonic transit in normal prostor of observations of the second secon and vomiting using the ipecacuanha model of emesis.

In normal adult volunteers, the following mean pharmacokinetic data have been determined following a single 0.15-mg/kg intravenous dose.

Table 3. Pharmacokinetics in Normal Adult Volunteers

Age-group (years)	n	Peak Plasma Concentration (ng/mL)	Mean Elimination Half-life (h)	Plasma Clearance (L/h/kg)
19-40	11	102	3.5	0.381
61-74	12	106	4.7	0.319
≥75	11	170	5.5	0.262

Absorption: A study was performed in normal volunteers (n = 56) to evaluate the pharmacokinetics of a single 4-mg dose administered as a 5-minute infusion compared to a single intramuscular injection. Systemic exposure as measured by mean AUC were equivalent, with values of 156 [95% CI 136, 180] and 161 [95% CI 137, 190] ng h/mL for intravenous and intramuscular groups, respectively. Mean peak plasma concentrations were 42.9 [95% Cl 328, 54.4] ng/mL at 10 minutes after intravenous infusion and 31.9 [95% Cl 26.3, 38.6] ng/mL at 41 minutes after intravenous line and the second se

<u>Distribution:</u> Plasma protein binding of ondansetron as measured in vitro was 70% to 76%, over the pharmacologic concentration range of 10 to 500 ng/mL. Circulating drug also distributes into erythrocytes.</u>

Metabolism: Ondansetron is extensively metabolized in humans, with approximately 5% of a radiolabeled dose recovered as the parent compound from the urine. The primary metabolic pathway is hydroxylation on the indole ring followed by subsequent glucuronide or sulfate conjugation

Although some nonconjugated metabolites have pharmacologic activity, these are not found in plasma at concentrations likely to significantly contribute to the biological activity of ondansetron. The metabolites are observed in the urine.

In vitro metabolism studies have shown that ondansetron is a substrate for multiple human hepatic cvtochrome P-450 enzymes. including CYP1A2, CYP206, and CYP3A4. In terms of overall ondansetron turnover, CYP3A4 plays a predominant role while formation of the major in vivo metabolites is apparently mediated by CYP1A2. The role of CYP2D6 in ondansetron in vivo metabolism is relatively minor.

The pharmacokinetics of intravenous ondansetron did not differ between subjects who were poor metabolisers of CYP2D6 and those who were extensive metabolisers of CYP2D6, further supporting the limited role of CYP2D6 in ondansetron disposition in

Flimination: In adult cancer patients, the mean ondansetron elimination half-life was 4.0 hours, and there was no difference in the multilature in a dut carbe patients, the mean ofinanserion eminimation harme was A of burs, and there was no the multilose pharmacokinetics over a 4-day period. In a dose proportionality study, systemic exposure to 32 mg of ondanserion was not proportional to dose as measured by comparing dose-normalized AUC values to an 8-mg dose. This is consistent with a small decrease in systemic clearance with increasing plasma concentrations.

Geriatrics: A reduction in clearance and increase in elimination half-life are seen in patients over 75 years of age. In clinical trials with cancer patients, safety and efficacy were similar in patients over 65 years of age and those under 65 years of age; there nber of patients over 75 years of age to permit conclusions in that age-group. No dosage adjus recommended in the elderly.

Pediatrics: Pharmacokinetic samples were collected from 74 cancer patients 6 to 48 months of age, who received a dose of 0.15 mg/kg of intravenous ondansetron every 4 hours for 3 doses during a safety and efficacy trial. These data were combined with sequential pharmacokinetics data from 41 surgery patients 1 month to 24 months of age, who received a single dose of 0.1 mg/kg of intravenous ondansetron prior to surgery with general anesthesia, and a population pharmacokinetic analysis was performed on the combined data set. The results of this analysis are included in Table 4 and are compared to the pharmacokinetic results in cancer patients 4 to 18 years of age.

Table 4. Pharmacokinetic	in Pediatric Cancer Patients	1 Month to 18 Years of Age
--------------------------	------------------------------	----------------------------

Subjects and Age Group	N	CL (L/h/kg)	Vd _{ss} (L/kg)	Т _½ (h)
		Geometri	c Mean	Mean
Pediatric Cancer Patients 4 to 18 years of age	N = 21	0.599	1.9	2.8
Population PK Patients ^a 1 month to 48 months of age	N = 115	0.582	3.65	4.9

^a Population PK (Pharmacokinetic) Patients: 64% cancer patients and 36% surgery patients.

Based on the population pharmacokinetic analysis, cancer patients 6 to 48 months of age who receive a dose of 0.15 mg/kg of

intravenous ondansetron every 4 hours for 3 doses would be expected to achieve a systemic exposure (AUC) consistent with the exposure achieved in previous pediatric studies in cancer patients (4 to 18 years of age) at similar doses.

In a study of 21 pediatric patients (3 to 12 years of age) who were undergoing surgery requiring anesthesia for a duration of 45 minutes to 2 hours, a single intravenous dose of ondansetron, 2 mg (3 to 7 years) or 4 mg (8 to 12 years), was administered immediately prior to anesthesia induction. Mean weight-normalized clearance and volume of distribution values in these pediatric surgical patients were similar to those previously reported for young adults. Mean terminal half-life was slightly reduced in pediatric patients (range, 2.5 to 3 hours) in comparison with adults (range, 3 to 3.5 hours).

In a study of 51 pediatric patients (1 month to 24 months of age) who were undergoing surgery requiring general anesthesia, a single intravenous dose of ondansetron, 0.1 or 0.2 mg/kg, was administered prior to surgery. As shown in Table 5, the 41 patients with pharmackinetic data were divided into 2 groups, patients 1 month to 4 months of age and patients 5 to 24 months of age, and are compared to pediatric patients 3 to 12 years of age.

Table 5. Pharmacokinetics in Pediatric Surgery Patients 1 Month to 12 Years of Age

Subjects and Age Group	N	CL (L/h/kg)	Vd _{ss} (L/kg)	T _{1/2} (h)
		Geometr	ic Mean	Mean
Pediatric Surgery Patients 3 to 12 years of age	N = 21	0.439	1.65	2.9
Pediatric Surgery Patients 5 to 24 months of age	N = 22	0.581	2.3	2.9
Pediatric Surgery Patients 1 month to 4 months of age	N = 19	0.401	3.5	6.7

In general, surgical and cancer pediatric patients younger than 18 years tend to have a higher ondansetron clearance compared to adults leading to a shorter half-life in most pediatic patients. In patients 1 month to 4 months of age, a longer half-life was observed due to the higher volume of distribution in this age group.

In a study of 21 pediatric cancer patients (4 to 18 years of age) who received three intravenous doses of 0.15 mg/kg of ondansetron at 4-hour intervals, patients older than 15 years of age exhibited ondansetron pharmacokinetic parameters similar to those of adults.

Renal Impairment: Due to the very small contribution (5%) of renal clearance to the overall clearance, renal impairment was not expected to significantly influence the total clearance of ondansetron. However, ondansetron mean plasma clearance was reduced by about 41% in patients with severe renal impairment (creatinine clearance 3 mL/min). This reduction in clearance is variable and was not consistent with an increase in half-life. No reduction in dose or dosing frequency in these patients is warranted. Hepatic Impairment: In patients with mild-to-moderate hepatic impairment, clearance is reduced 2-fold and mean half-life is increased to 11.6 hours compared to 5.7 hours in those without hepatic impairment. In patients with severe hepatic impairment (Child-Pugh score of 10 or greater), clearance is reduced 2-fold to 3-fold and apparent volume of distribution is increased with resultant increase in half-life to 20 hours. In patients with severe hepatic impairment, a total daily dose of 8 mg should not be

13 NONCLINICAL TOXICOLOGY

13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility

Carcinogenic effects were not seen in 2-year studies in rats and mice with oral ondansetron doses up to 10 and 30 mg/kg per day, respectively (approximately 3.6 and 5.4 times the recommended human intravenous dose of 0.15 mg/kg given three times a day, based on body surface area). Ondansetron was not mutagenic in standard tests for mutagenicity.

Oral administration of ondansetron up to 15 mg/kg per day (approximately 3.8 times the recommended human intravenous dose, based on body surface area) did not affect fertility or general reproductive performance of male and female rats.

14 CLINICAL STUDIES

The clinical efficacy of ondansetron hydrochloride, the active ingredient, was assessed in clinical trials as described below. 14.1 Chemotherapy-Induced Nausea and Vomiting

Adults: In a double-blind study of three different dosing regimens of ondansetron injection. 0.015 mg/kg, 0.15 mg/kg, and effective than the 0.015-mg/kg dosing regimen. The 0.30-mg/kg dosing regimen was not shown to be more effective than the 0.15-ma/ka dosina reaimen.

Cisplatin-Based Chemotherapy: In a double-blind study in 28 patients, ondansetron Injection (three 0.15-mg/kg doses) was significantly more effective than placebo in preventing nausea and vomiting induced by cisplatin-based ch Therapeutic response was as shown in Table 6.

Table 6 Theraneutic Response in Prevention of Chemotherany-Induced Nausea and omiting in Single-Day Cisplatin Therapy^a in Adults

	Ondansetron Injection (0.15 mg/kg x 3)	Placebo	P Value ^b
Number of patients	14	14	
Treatment response 0 Emetic episodes 1-2 Emetic episodes 3-5 Emetic episodes More than 5 emetic episodes/rescued	2 (14%) 8 (57%) 2 (14%) 2 (14%)	0 (0%) 0 (0%) 1 (7%) 13 (93%)	0.001
Median number of emetic episodes	1.5	Undefined ^c	
Median time to first emetic episode (h)	11.6	2.8	0.001
Median nausea scores (0-100) ^d	3	59	0.034
Global satisfaction with control of nausea and vomiting (0-100) ^e	96	10.5	0.009

^a Chemotherapy was high dose (100 and 120 mg/m²; Ondanseton Injection n = 6, placebo n = 5) or moderate dose (50 and 80mg/m²; Odansetron Injection n = 8, placebo n = 9). Other chemotherapeutic agents included fluorouracil, doxorubicin, and cvclophosphamide. There was no difference between treatments in the types of chemotherapy that would account for differences in response

Efficacy based on "all patients treated" analysis.

- Median undefined since at least 50% of the patients were rescued or had more than five emetic episodes.
- ^d Visual analog scale assessment of nausea: $\vec{0}$ = no nausea, 100 = nausea as bad as it can be.
- ^e Visual analog scale assessment of satisfaction: 0 = not at all satisfied, 100 = totally satisfied.

Ondansetron injection (0.15-mg/kg x 3 doses) was compared with metoclopramide (2 mg/kg x 6 doses) in a single-blind trial in 307 patients received has a 100 mg/m² with or without other chemotherapeutic agents. Patients received the first dose of ondansetron or metoclopramide 30 minutes before cisplatin. Two additional ondansetron doses were administered 4 and 8 hours later, or five additional metoclopramide doses were administered 2, 4, 7, 10, and 13 hours later. Cisplatin was administered over a period of 3 hours or less. Episodes of vomiting and retching were tabulated over the period of 24 hours after cisplatin. The results of this study are summarized in Table

Table 7. Therapeutic Response in Prevention of Vomiting Induced by Cisplatin (≥ 100 mg/m²) Single-Day Therapy® in Adults

	Ondansetron Injection	Metoclopramide	<i>P</i> Value
Dose	0.15 mg/kg x 3	2 mg/kg x 6	
Number of patients in efficacy population	136	138	
Treatment response 0 Emetic episodes 1-2 Emetic episodes 3-5 Emetic episodes More than 5 emetic episodes/rescued	54 (40%) 34 (25%) 19 (14%) 29 (21%)	41 (30%) 30 (22%) 18 (13%) 49 (36%)	

Comparison of treatments with respect to 0 Emetic episodes More than 5 emetic episodes/rescued	54/136 29/136	41/138 49/138	0.083 0.009
Median number of emetic episodes	1	2	0.005
Median time to first emetic episode (h)	20.5	4.3	< 0.001
Global satisfaction with control of nausea and vomiting $(00100)^{\rm b}$	85	63	0.001
Acute dystonic reactions	0	8	0.005
Akathisia	0	10	0.002

^a In addition to cisplatin, 68% of patients received other chemotherapeutic agents, including cyclophosphamide, etoposide, and rouracil. There was no difference between treatments in the types of chemotherapy that would account for differ response

^b Visual analog scale assessment: 0 = not at all satisfied, 100 = totally satisfied.

Cyclophosphamide-Based Chemotherapy: In a double-blind, placebo-controlled study of ondansetron injection (three 0.15-mg/ kg doses) in 20 patients receiving cyclophosphamide (500 to 600 mg/m²) chemotherapy, ondanserton injection (une 0.13-mg/ more effective than placebo in preventing nausea and vomiting. The results are summarized in Table 8.

Table 8. Therapeutic Response in Prevention of Chemotherapy-Induced

Nausea and Vomiting in Single-Day Cyclophosphamide Therapy^a in Adults

	Ondansetron Injection (0.15 mg/kg x 3)	Placebo	P Value ^b
Number of patients	10	10	
Treatment response 0 Emetic episodes 1-2 Emetic episodes 3-5 Emetic episodes More than 5 emetic episodes/rescued	7 (70%) 0 (0%) 2 (20%) 1 (10%)	0 (0%) 2 (20%) 4 (40%) 4 (40%)	0.001
Median number of emetic episodes	0	4	0.008
Median time to first emetic episode (h)	Undefined	8.79	
Median nausea scores (0-100) ^d	0	60	0.001
Global satisfaction with control of nausea and vomiting (0-100) ^e	100	52	0.008

Chemotherapy consisted of cyclophosphamide in all patients, plus other agents, including fluorouracil, doxorubicin methotrexate, and vincristine. There was no difference between treatments in the type of chemotherapy that would account for differences in response.

- Efficacy based on "all patients treated" analysis.
- Median undefined since at least 50% of patients did not have any emetic episodes.
- ^d Visual analog scale assessment of nausea: 0 = no nausea, 100 = nausea as bad as it can be.
- Visual analog scale assessment of satisfaction: 0 = not at all satisfied, 100 = totally satisfied.

Re-treatment: In uncontrolled trials, 127 patients receiving cisplatin (median dose, 100 mg/m²) and ondansetron who had two or fewer emetic episodes were re-treated with ondansetron and chemotherapy, mainly cisplatin, for a total of 269 re-treatment courses (median, 2; range, 1 to 10). No emetic episodes occurred in 160 (59%), and two or fewer emetic episodes occurred in 217 (81%) re-treatment courses.

Pediatrics: Four open-label, noncomparative (one US, three foreign) trials have been performed with 209 pediatric cancer patients 4 to 18 years of age given a variety of cisplatin or noncisplatin regimens. In the three foreign trials, the initial ondansetron injection dose ranged from 0.04 to 0.87 mg/kg for a total dose of 2.16 to 12 mg. This was followed by the oral administration of index to the second se esponse (no emetic episodes) on day 1. Thus, prevention of vomiting in these pediatric patients was essentially the same as for patients older than 18 years of age.

An open-label, multicenter, noncomparative trial has been performed in 75 pediatric cancer patients 6 to 48 months of age receiving at least one moderately or highly emetogenic chemotherapeutic agent. Fifty-seven percent (57%) were females 67% were white, 18% were American Hispanic, and 15% were black patients. Ondansetron was administered intravenously over 15 minutes in three doses of 0.15 mg/kg. The first dose was administered 30 minutes before the start of chemotherapy, the second and third does were administered and 8 hours after the first dose, respectively. Eighteen patients (25%) received routine prophylactic dexamethasone (i.e., not given as rescue). Of the 75 evaluable patients, 56% had a complete response (no emetic episodes) on day 1. Thus, prevention of vomiting in these pediatric patients was comparable to the prevention of vomiting in patients 4 years of age and older.

14.2 Prevention of Postoperative Nausea and/or Vomiting

Adults: Adult surgical patients who received ondansetron immediately before the induction of general balanced anesthesia Adults: Adult surgical patients who received ondansetron immediately before the induction of general balanced anesthesia (barbiturate: thiopental, methohexital, or thiamylal; opioid: alfentanil or fentanyl; nitrous oxide; neuromuscular blockade: succinylcholine/curare and/or vecuronium or atracurium; and supplemental isoflurane) were evaluated in two double-blind US studies involving 554 patients. Ondansetron injection (4 mg) intravenous given over 2 to 5 minutes was significantly more effective than placebo. The results of these studies are summarized in Table 9.

Table 9. Therapeutic Response in Prevention of Postoperative Nausea and Vomiting in Adult Patients

	Ondansetron 4 mg Intravenous	Placebo	<i>P</i> Value
Study 1			
Emetic episodes: Number of patients Treatment response over 24-h postoperative period O Emetic episodes 1 Emetic episode More than 1 emetic episode/rescued	136 103 (76%) 13 (10%) 20 (15%)	139 64 (46%) 17 (12%) 58 (42%)	<0.001
Nausea assessments: Number of patients No nausea over 24-h postoperative period	134 56 (42%)	136 39 (29%)	
Study 2			
Emetic episodes: Number of patients Treatment response over 24-h postoperative period 0 Emetic episodes 1 Emetic episode More than 1 emetic episode/rescued	136 85 (63%) 16 (12%) 35 (26%)	143 63 (44%) 29 (20%) 51 (36%)	0.002
Nausea assessments: Number of patients No nausea over 24-h postoperative period	125 48 (38%)	133 42 (32%)	

The study populations in Table 9 consisted mainly of females undergoing laparoscopic procedures In a placebo-controlled study conducted in 468 males undergoing outpatient procedures, a single 4-mg intravenous ondansetron dose prevented postoperative vomiting over a 24-hour study period in 79% of males receiving drug compared to 63% of males receiving placebo (P < 0.001).

Two other placebo-controlled studies were conducted in 2,792 patients undergoing major abdominal or gynecological surgeries to evaluate a single 4-mg or 8-mg intravenous ondansetron dose for prevention of postoperative nausea and vomiting over a 24-hour study period. At the 4-mg dosage, 59% of patients receiving notansetron versus 45% receiving placebo in the first study (P<0.001) and 41% of patients receiving ondansetron versus 30% receiving placebo in the second study (P=0.001) experienced no emetic episodes. No additional benefit was observed in patients who received intravenous ondansetron 8 mg compared to natients who received intravenous ondansetron 4 mg.

Pediatrics: Three double-blind, placebo-controlled studies have been performed (one US, two foreign) in 1.049 male and female patients (2) the boots bane, placed outperformed anesthesia with nitrous oxide. The surgical procedures included tonsillectomy with or without adenoidectomy, strabismus surgery, herniorrhaphy, and orchidopexy. Patients were randomized to either single intravenous doses of ondansetron (0.1 mg/kg for pediatric patients weighing 40 kg or less, 4 mg for pediatric patients weighing more than 40 kg) or placebo. Study drug was administered over at least 30 seconds, immediately prior to or following anesthesia induction. Ondansetron was significantly more effective than placebo in preventing nausea and vomiting. The results of these studies are summarized in Table 10.

Table 10. Therapeutic Response in Prevention of Postoperative

Treatment Response Over 24 Hours	Ondansetron n (%)	Placebo n (%)	<i>P</i> Value
Study 1			
Number of patients	205	210	
0 Emetic episodes	140 (68%)	82 (39%)	≤ 0.001
Failureª	65 (32%)	128 (61%)	
Study 2			1
Number of patients	112	110	
0 Emetic episodes	68 (61%)	38 (35%)	≤ 0.001
Failure ^a	44 (39%)	72 (65%)	
Study 3			
Number of patients	206	206	
0 Emetic episodes	123 (60%)	96 (47%)	≤ 0.01
Failure ^a Nausea assessments ^b :	83 (40%)	110 (53%)	
Number of patients	185	191	
None	119 (64%)	99 (52%)	≤ 0.01

Failure was one or more emetic episodes, rescued, or withdrawn. Nausea measured as none, mild, or severe.

A double-blind, multicenter, placebo-controlled study was conducted in 670 pediatric patients 1 month to 24 months of age who were undergoing routine surgery under general anesthesia. Seventy-five percent (75%) were males; 64% were white, 15% were black, 13% were American Hispanic, 2% were Asian, and 6% were "other race" patients, A single 0.1-mg/kg intravenous dose black to whole anticidant inspirate, 2 whole adata and on while other tack planta is a single of infigure (in the planta) of order black is a way statistically significantly more effective than placebo in preventing vomiting. In the placebo group, 28% of patients experienced vomiting compared to 11% of subjects who received ondansetron ($P \le 0.01$). Overall, 32 (10%) of placebo patients and 18 (5%) of patients who received ondansetron received antiemetic rescue medication(s) or prematurely withdrew from the study

14.3 Prevention of Further Postoperative Nausea and Vomiting

Adults: Adult surgical patients receiving general balanced anesthesia (barbiturate: thiopental, methohexital, or thiamylal; opioid: alfentanil or fentanyl; nitrous oxide; neuromuscular blockade: succinylcholine/curare and/or vecuronium or atracurium; and supplemental isoflurane) who received no prophylactic antiemetics and who experienced nausea and/or vomiting within 2 hours postoperatively were evaluated in two double-blind US studies involving 441 patients. Patients who experienced an episode of postoperatively were evaluated in two double-bind OS studies involving 441 patients and who experienced an episode of postoperative nausea and/or vomiting were given ondanserton injection (4 mg) intravenous over 2 to 5 minutes, and this was significantly more effective than placebo. The results of these studies are summarized in Table 11.

Table 11 Theraneutic Response in Prevention of Further Postonerative Nausea and Vomiting in Adult Patients

	Ondansetron 4 mg Intravenous	Placebo	P Value
Study 1			
Emetic episodes:			
Number of patients Treatment response 24 h after study drug	104	117	
0 Emetic episodes	49 (47%)	19 (16%)	<0.001
1 Emetic episode	12 (12%)	9 (8%)	
More than 1 emetic episode/rescued	43 (41%)	89 (76%)	
Median time to first emetic episode (min) ^a	55.0	43.0	
Nausea assessments:			
Number of patients	98	102	
Mean nausea score over 24-h postoperative period ^b	1.7	3.1	
Study 2			
Emetic episodes:			
Number of patients Treatment response 24 h after study drug	112	108	
0 Emetic episodes	49 (44%)	28 (26%)	0.006
1 Emetic episode	14 (13%)	3 (3%)	
More than 1 emetic episode/rescued	49 (44%)	77 (71%)	
Median time to first emetic episode (min) ^a	60.5	34.0	
Nausea assessments:			
Number of patients	105	85	
Mean nausea score over 24-h postoperative period ^b	1.9	2.9	

^a After administration of study drug.

^b Nausea measured on a scale of 0-10 with $0 = n_0$ nausea, $10 = n_0$ has a bad as it can be. The study populations in Table 11 consisted mainly of women undergoing laparoscopic procedures. Repeat Dosing in Adults: In patients who do not achieve adequate control of postoperative nausea and vomiting following a single, prophylactic, preinduction, intravenous dose of ondansetron 4 mg, administration of a second intravenous dose of tron 4 mg postoperatively does not provide additional control of nausea and vomiting. Pediatrics: One double-blind placebo-controlled US study was performed in 351 male and female outpatients (2 to 12 years of hesia with nitrous oxide and no prophylactic antiemetics. Surgical procedures were un

Patients who experienced two or more emetic episodes within 2 hours following discontinuation of nitrous oxide were randomized to either single intravenous doses of ondansetron (0.1 mg/kg for pediatric patients weighing 40 kg or less, 4 mg for pediatric to enter single intravenues does of officialise of 0.1 mg/g to perturb patients weighing more than 40 kg) or placebo administered over at least 30 seconds. Ondanserton was significantly more effective than placebo in preventing further episodes of nausea and vomiting. The results of the study are summarized in Table 12

Table 12 Theraneutic Response in Prevention of Further Postonerative Nausea and Vomiting in Pediatric Patients 2 to 12 Years of Age

Treatment Response	Ondansetron	Placebo	<i>P</i> Value	
Over 24 hours	n (%)	n(%)		
Number of patients	180	171	≤ 0.001	
O Emetic episodes	96 (53%)	29 (17%)		
Failure ^a	84 (47%)	142 (83%)		

Failure was one or more emetic episodes, rescued, or withdrawn

16 HOW SUPPLIED/STORAGE AND HANDLING

Ondansetron Injection USP, 2 mg/mL, is supplied as follows

NDC 0069-1340-16	2-mL single-dose vials (Carton of 25)
NDC 0069-1340-02	20-mL multi-dose vials (Singles)

Store at 20° to 25° C (68° to 77°F) [see USP Controlled Room Temperature]. May be refrigerated. Protect from light.

17 PATIENT COUNSELING INFORMATION

- Patients should be informed that ondansetron may cause serious cardiac arrhythmias such as QT prolongation. Patients should be instructed to tell their health care provider right away if they perceive a change in their heart rate, if they feel lightheaded, or if they have a syncopal episode.
- Patients should be informed that the chances of developing severe cardiac arrhythmias such as QT prolongation and Torsade de Pointes are higher in the following people:
- Patients with a personal or family history of abnormal heart rhythms, such as concentral long QT syndrome;
- o Patients who take medications, such as diuretics, which may cause electrolyte abnormalities
- o Patients with hypokalemia or hypomagnesemia Ondansetron injection should be avoided in these patients, since they may be more at risk for cardiac arrhythmias such as QT prolongation and Torsade de Pointes.
- Inform patients that odansetron may cause hypersensitivity reactions, some as severe as anaphylaxis and bronchospasm. The patient should report any signs and symptoms of hypersensitivity reactions, including fever, chills, rash, or breathing nrohlems
- · The patient should report the use of all medications, especially apomorphine, to their health care provider. Concomitant use of apomorphine and ondansetron may cause a significant drop in blood pressure and loss of conscious
- Inform patients that ondansetron may cause headache, drowsiness/sedation, constipation, fever and diarrhea.

Distributed by Pfizer Labs ion of Pfizer Inc New York, NY 10017

Revised: February 2013 1022068

