SCHEDULING STATUS: S4

1. NAME OF THE MEDICINE

MYCOBUTIN[®] 150 mg Capsules

2. QUALITATIVE AND QUANTITATIVE COMPOSITION

Each capsule contains 150 mg rifabutin.

MYCOBUTIN capsules are sugar free.

For the full list of excipients, see section 6.1.

3. PHARMACEUTICAL FORM

Capsule

Red-brown, self-locking, hard gelatin capsule, size 0, containing a violet powder.

4. CLINICAL PARTICULARS

4.1 Therapeutic indications

- Treatment of pulmonary tuberculosis caused by *M. tuberculosis*, proven to be sensitive by laboratory tests to rifabutin and resistant to rifampicin, in combination with other medicines not belonging to the rifamycin group.
- MYCOBUTIN is also effective for infections caused by *M. avium intracellulare complex* (MAC) or *M. xenopi* for the treatment of both disseminated and localised disease and also in immunocompromised HIV-infected patients.
- MYCOBUTIN is also indicated for the prophylactic treatment of infections caused by *M. avium* intracellulare complex (MAC) in patients with advanced HIV infection.

4.2 Posology and method of administration

Posology

MYCOBUTIN can be administered as a single daily dose, independent of meals. In all cases MYCOBUTIN is to be administered in combination regimens.

Newly diagnosed pulmonary tuberculosis with resistance to only rifampicin

1 capsule (150 mg) daily for 6 months.

Chronic, multidrug-resistant pulmonary tuberculosis

2 to 3 capsules (300 – 450 mg) daily for up to 6 months after negative sputum cultures are obtained.

Atypical mycobacterial infections (MAC and M. xenopi)

3 to 4 capsules (450 – 600 mg) daily for up to 6 months after negative cultures are obtained.

Prophylaxis of MAC in patients with advanced HIV infections

2 capsules (300 mg) daily.

The above doses are indicated in adults with a body mass of greater than 35 kg. No specific dosage alterations are proposed in the elderly.

Method of administration

For oral use.

4.3 Contraindications

- Hypersensitivity to rifabutin, other rifamycins (e.g. rifampicin) or any of the excipients of MYCOBUTIN listed in section 6.1.
- HIV-infected patients taking clarithromycin.
- For concomitant medicines not recommended with MYCOBUTIN, see section 4.5.

4.4 Special warnings and precautions for use

MYCOBUTIN may impart a red-orange colour to the urine and possibly to skin and body secretions (saliva, sputum and tears).

Soft contact lenses

These may be permanently stained by MYCOBUTIN administration.

MYCOBUTIN should always be given in combination with other anti-mycobacterial medicines not belonging to the family of rifamycins.

It is recommended that liver enzymes, white blood cell and platelet counts be monitored during therapy with MYCOBUTIN.

When MYCOBUTIN is used concomitantly with clarithromycin for MAC treatment, a decreased dose of MYCOBUTIN is recommended due to the increase in plasma concentrations of MYCOBUTIN (see sections 4.2 and 4.5). Due to the possible occurrence of uveitis, patients should also be carefully monitored when MYCOBUTIN is given in combination with clarithromycin (or other macrolides) and/or fluconazole (and related compounds). If uveitis is suspected, the patient should be referred to an ophthalmologist and, if considered necessary, treatment with MYCOBUTIN should be suspended (see sections 4.8 and 4.5).

Protease inhibitors act as substrates or inhibitors of CYP450 3A4 mediated metabolism. Therefore, due to significant interactions between protease inhibitors and MYCOBUTIN, their concomitant use should be based on the overall assessment of the patient and patient-specific medicine profile (see section 4.5).

Clostridium difficile-associated diarrhoea (CDAD) has been reported with use of MYCOBUTIN, and may range in severity from mild diarrhoea to fatal colitis. Treatment with MYCOBUTIN alters the normal flora of the colon leading to overgrowth of *C. difficile*.

C. difficile produces toxins A and B which contribute to the development of CDAD. Hypertoxinproducing strains of *C. difficile* cause increased morbidity and mortality, as these infections can be refractory to antimicrobial therapy and may require colectomy.

CDAD must be considered in all patients who present with diarrhoea following MYCOBUTIN use. Careful medical history is necessary since CDAD has been reported to occur over two months after the administration of antibacterial medicines such as MYCOBUTIN.

Co-administration of ritonavir is not recommended because it substantially increases the plasma concentration of MYCOBUTIN (see section 4.5). High plasma concentrations of MYCOBUTIN may increase the risk of side effects.

If a patient on MYCOBUTIN develops active tuberculosis, other anti-tuberculosis medicine should be added.

Special populations

Severe hepatic impairment

For patients with severe liver insufficiency a dose reduction should be considered. Mild hepatic impairment does not require a dose modification.

Severe renal impairment (creatinine clearance below 30 mL/min)

A dosage reduction of 50 % is required. Mild to moderate renal impairment does not require any dosage adjustment.

Paediatric population

Safety and efficacy in children and adolescents have not been established.

4.5 Interaction with other medicines and other forms of interaction

Multiple dosing of MYCOBUTIN has been associated with induction of hepatic metabolic enzymes of the CYP450 3A subfamily. MYCOBUTIN's predominant metabolite (25-O-desacetyl rifabutin; LM 565), may also contribute to this effect. Metabolic induction due to MYCOBUTIN is likely to produce a decrease in circulating levels of concomitantly administered medicines (especially those metabolised by the CYP450 3A pathway).

Kinetic data suggest that enzymatic induction by MYCOBUTIN is complete within 5 days and is dose-independent over the 300 to 600 mg dose-range. Similarly, concomitant medicines that competitively inhibit the CYP450 3A activity may increase circulating levels of MYCOBUTIN.

Table 1 summarises the results and magnitude of the pertinent medicine interactions assessed with MYCOBUTIN. The clinical relevance of these interactions and subsequent dose modifications should be judged in light of the population studied, severity of the disease, patient's medicine profile, and the likely impact on the risk/benefit ratio.

The following table provides details of the possible effects of co-administration, on MYCOBUTIN and the co-administered medicine and risk-benefit statement.

Co-administered	Effect on	Effect on co-	Comments
medicines	MYCOBUTIN	administered medicine	
ANTIVIRALS			
Amprenavir	2,9-fold increase	No significant change	A 50 % reduction in the
	in AUC, 2,2-fold	in kinetics	MYCOBUTIN dose is
	increase in C _{max}		recommended when
			combined with amprenavir.
			Increased monitoring for
			adverse reactions is
			warranted.
		1	

Table 1: MYCOBUTIN interaction studies:

Delavirdine	No data		Oral clearance	Study conducted in HIV-1
			increased 5-fold	infected patients.
			resulting in	MYCOBUTIN is not
			significantly lower	recommended for patients
			mean trough plasma	dosed with delavirdine
			concentrations (18 \pm	mesylate 400 mg every 8
			15 to 1,0 \pm 0,7 $\mu M)$	hours.
Didanosine	No significar	nt	No significant change	
	change in kir	netics	in kinetics at steady-	
			state	
Fosamprenavir 64	4 %	35 % i	ncrease in AUC and 36	Dosage reduction of
/ritonavir in	ncrease in	% incr	ease in C _{max} , no effect	MYCOBUTIN by at least
A	VUC*	C_{trough}	(amprenavir)	75 % (to 150 mg every
				other day or three times
				per week) is
				recommended when
				combined with
				fosamprenavir.
Indinavir 1	73 %	34 % decrease in AUC, 25 %		Dose reduction of
in	ncrease in	decrea	ase in C _{max}	MYCOBUTIN to half the
A	UC, 134 %			standard dose and
in	ncrease in			increase of indinavir from
с	max			800 mg to 1 000 mg
				every 8 hours are
				recommended when
				MYCOBUTIN and
				indinavir are co

Lopinavir/	5,7-fold	No significant change in	Dosage reduction of
ritonavir	increase in	lopinavir kinetics	MYCOBUTIN by 50 % of
	AUC, 3,4		the dose of 300 mg/day is
	fold increase		recommended (i.e. a
	in C _{max} *		maximum dose of 150 mg
			once daily). Increased
			monitoring for adverse
			reactions e.g. nausea,
			leukopenia, uveitis, is
			warranted. Further
			dosage reduction of
			MYCOBUTIN may be
			necessary.
Saquinavir	No data	40 % decrease in AUC	
Ritonavir	4-fold	No data	In the presence of
	increase in		ritonavir the subsequent
	AUC, 2,5-		risk of side effects,
	fold increase		including uveitis may be
	in C _{max}		increased. If a protease
			inhibitor is required in a
			patient treated with
			rifabutin, medicines other
			1
			than ritonavir should be
			than ritonavir should be considered (see section

Tipranavir/	2,9-fold	No significant change in	Therapeutic medicine
ritonavir	increase in	tipranavir kinetics	monitoring of
	AUC, 1,7-		MYCOBUTIN is
	fold increase		recommended.
	in C _{max}		
Zidovudine	No	Approximately 32 % decrease	A clinical study has
	significant	in C _{max} and AUC	shown that these
	change in		changes are of no clinical
	kinetics		relevance.
ANTIFUNGALS			
Fluconazole	82 %	No significant change in	
	increase in	steady-state plasma	
	AUC	concentrations	

Itraconazole	No data	70 – 75 % decrease in C _{max}	One case report
		and AUC	suggests a kinetic
			interaction resulting in an
			increase in serum
			MYCOBUTIN levels and
			a risk for developing
			uveitis in the presence of
			itraconazole.
Ketoconazole	No data	No data	Co-administration is not
			recommended. If
			concomitant use is
			clinically warranted,
			carefully monitor
			patients for increased
			MYCOBUTIN levels or
			adverse reactions and for
			reduced ketoconazole
			efficacy

Posaconazole	31 %	43 % decrease in C _{max} ,	If the medicines are co-
	increase in	49 % decrease in AUC	administered, patients should be
	C _{max} , 72 %		monitored for adverse events
	increase in		associated with MYCOBUTIN
	AUC		administration.
Voriconazole	195 %	MYCOBUTIN (300 mg	If the benefit outweighs the risk,
	increase in	once daily) decreased	MYCOBUTIN may be co-
	C _{max} , 331 %	the C_{max} and AUC of	administered with voriconazole if
	increase in	voriconazole	the maintenance dose of
	AUC **	administered orally at	voriconazole is increased to 5
		200 mg twice daily by	mg/kg intravenously every 12
		69 % and 78 %,	hours or from 200 mg to 350 mg
		respectively. During co-	orally, every 12 hours (100 mg to
		administration with	200 mg orally, every 12 hours in
		MYCOBUTIN, the C _{max}	patients less than 40 kg). Careful
		and AUC of	monitoring of full blood counts
		voriconazole at 350 mg	and adverse events to
		twice daily were 96 %	MYCOBUTIN (e.g. uveitis) is
		and 68 % of the levels	recommended when
		when administered	MYCOBUTIN is co-administered
		alone at 200 mg twice	with voriconazole.
		daily. At a voriconazole	
		dose of 400 mg twice	
		daily, C _{max} and AUC	
		were 104 % and 87 %	
		higher, respectively,	
		compared with	
		voriconazole alone at	
		200 mg twice daily.	
1	1	1	1

ANTI-PCP (Pne	ANTI-PCP (Pneumocystis jiroveci pneumonia)			
Dapsone	No data	Approximately		Study conducted in HIV-infected
		27 – 40 %		patients (rapid and slow acetylators).
		decrease in AU0	С	
Sulfa-	No significant	Approximately 1	5	In another study, only trimethoprim
methoxazole-	change in	– 20 % decrease	е	(not sulfamethoxazole) had 14 %
trimethoprim	C _{max} and	in AUC		decrease in AUC and 6 % decrease in
	AUC			C _{max} but were not considered clinically
				significant.
ANTI-MAC (My	cobacterium avit	um intracellulare c	omp	lex)
Azithromycin	No	No pharmaco-		The combination of MYCOBUTIN and
	pharmaco-	kinetic interactio	n	azithromycin resulted in a high
	kinetic			frequency of adverse effects.
	interaction			
ANTI-TB (tuber	culosis)			
Ethambutol	No data	No significant		
		change in AUC	or	
		C _{max}		
Isoniazid	No data	Pharmaco-kinet	ics	
		not affected		
Pyrazinamide	No data	No data		
OTHER	1	1		
Methadone	No data	No significant	No	apparent effect of MYCOBUTIN on
		effect	eith	ner peak levels of methadone or
			sys	temic exposure based upon AUC.
			MY	COBUTIN kinetics not evaluated.

Oral	No data	No data	Contraceptive cover may not be
contraceptives			adequate during concomitant therapy
			with MYCOBUTIN; therefore, patients
			should be advised to use other
			methods of contraception.
Tacrolimus	No data	No data	MYCOBUTIN decreases tacrolimus
			trough blood levels.
Theophylline	No data	No significant	
		change in	
		AUC or Cmax	
		compared with	
		1	
		baseline	

AUC – Area under the concentration vs. time curve

C_{max} – Maximum serum concentration

* Medicine plus active metabolite

** Voriconazole dosed at 400 mg twice daily

4.6 Fertility, pregnancy and lactation

Safety in pregnancy and lactation has not been established.

4.7 Effects on ability to drive and use machines

MYCOBUTIN is not expected to have any adverse effects on the ability to drive and use machines.

4.8 Undesirable effects

The tolerability of MYCOBUTIN in multiple medicine regimens has been assessed in long-term studies with daily dosages up to 600 mg in both immunocompetent and immunocompromised patients, suffering from tuberculosis and non-tuberculous mycobacteriosis.

MYCOBUTIN was often given in the studies in tuberculosis as part of a multi-medicine regimen,

and it was not always possible to define with certainty a medicine-event relationship.

Tabulated summary of adverse reactions

Side effects identified through clinical trials or post-marketing surveillance by system organ class are listed below.

The table below contains side effects categorised as follows utilising the incidence rates: very common ($\geq 1/10$), common ($\geq 1/100$ to < 1/10); uncommon ($\geq 1/1000$ to < 1/100); rare ($\geq 1/1000$ to < 1/100); rare ($\geq 1/10000$).

MedDRA	Frequency	Undesirable effects
system organ class		
Blood and lymphatic	Very common	Leukopenia
system disorders	Common	Anaemia
	Uncommon	Pancytopenia, thrombocytopenia,
		eosinophilia
Immune system	Uncommon	Hypersensitivity
disorders		
Eye disorders	Uncommon	Corneal deposits
Gastrointestinal	Common	Nausea, vomiting
disorders		

Hepato-biliary	Common	Increased hepatic enzymes
disorders	Uncommon	Jaundice
Skin and	Common	Rash
subcutaneous tissue	Uncommon	Skin pigmentation/ discolouration
disorders		
Musculoskeletal and	Common	Myalgia
connective tissue	Uncommon	Arthralgia
disorders		
General disorders	Common	Pyrexia
and administration		
site conditions		

The frequency and severity of haematologic reactions could be increased by combined administration of isoniazid.

Post-marketing experience

Skin discolouration has been reported. Mild to severe, reversible uveitis has been reported when MYCOBUTIN was used at 300 mg as monotherapy in MAC prophylaxis. MYCOBUTIN in combination with clarithromycin for MAC treatment was more frequently associated with uveitis (see section 4.4). Corneal deposits have been reported during routine ophthalmologic surveillance of HIV-positive paediatric patients receiving MYCOBUTIN as part of a multiple medicine regimen for MAC prophylaxis. The deposits are tiny, almost transparent, asymptomatic peripheral and central corneal deposits, and do not impair vision.

Anaphylactic shock has occurred with other antibiotics of the same class.

The table below contains side effects from post-marketing data.

MedDRA	Side effects
system organ class	
Blood and lymphatic system	Agranulocytosis, lymphopenia, granulocytopenia,
disorders	neutropenia, decreased white blood cell count,
	decreased neutrophil count, decreased platelet
	count
Immune system disorders	Bronchospasm
Eye disorders	Uveitis
Gastrointestinal disorders	Clostridium difficile colitis, tongue discolouration,
	tooth discolouration
Hepato-biliary disorders	Abnormal hepatic function
Skin and subcutaneous tissue	Erythema/ dermatitis
disorders	
Investigations	Increased alkaline phosphatase/ALT/AST

Reporting of suspected adverse reactions

Reporting suspected adverse reactions after authorisation of the medicine is important. It allows continued monitoring of the benefit/risk balance of the medicine. Health care providers are asked to report any suspected adverse reactions to SAHPRA via the "6.04 Adverse Drug Reactions Reporting Form", found online under SAHPRA's publications: https://www.sahpra.org.za/Publications/Index/8

4.9 Overdose

Symptoms as under section 4.8. Supportive care and symptomatic treatment are indicated.

5. PHARMACOLOGICAL PROPERTIES

5.1 Pharmacodynamic properties

Category and class: A 20.1.1 Broad and medium spectrum antibiotics

Rifabutin is a semi-synthetic ansamycin antibiotic. It inhibits incorporation of thymidine into DNA of *M. tuberculosis*.

In vitro activity of rifabutin against laboratory strains and clinical isolates of *M. tuberculosis* has been shown to be very high.

Rifabutin was seen to be active against non-tuberculous (atypical) mycobacteria including *M. avium-intracellulare* (MAC) *in vitro* as well as in experimental infections caused by these pathogens in immunodeficient mice.

5.2 Pharmacokinetic properties

In man, rifabutin peak plasma levels are reached around 2 to 4 hours after oral administration. The pharmacokinetics of rifabutin is linear after single dose administration of 300, 450 and 600 mg to healthy volunteers. With these doses, C_{max} is in the range of 0,4 to 0,7 µg/mL. Plasma concentrations are maintained above the MIC values for *M. tuberculosis* up to about 30 hours from administration. In animals, rifabutin is widely distributed in various organs with the exception of the brain.

Rifabutin and its metabolites are eliminated mainly by the urinary route. Of the five metabolites that have been identified, the 25-O-desacetyl derivative and the 31-hydroxyl derivative are the most predominant. The former has an antibacterial activity equal to the parent medicine. The elimination half-life of rifabutin in man is approximately 35 – 40 hours.

6. PHARMACEUTICAL PARTICULARS

6.1 List of excipients Gelatine Magnesium stearate Microcrystalline cellulose Red iron oxide Pfizer Laboratories (Pty) Ltd Mycobutin 150 mg capsules Final Approved PI – 01 April 2021

Silica gel

Sodium lauryl sulphate

Titanium dioxide

6.2 Incompatibilities

Not applicable.

6.3 Shelf life

24 months

6.4 Special precautions for storage

Store at or below 25 °C.

Protect from light and moisture.

6.5 Nature and contents of container

Transparent PVC/aluminium blisters in packs containing 30 and 100 capsules.

Not all pack sizes may be marketed.

6.6 Special precautions for disposal and other handling

No special requirements.

7. HOLDER OF CERTIFICATE OF REGISTRATION

Pfizer Laboratories (Pty) Ltd 85 Bute Lane Sandton 2196 South Africa Tel: +27(0)11 320 6000 / 0860 734 937 (Toll-free South Africa)

8. REGISTRATION NUMBER

Z/20.1.1/395

9. DATE OF FIRST AUTHORISATION

28 January 1994

10. DATE OF REVISION OF THE TEXT

01 April 2021

Manufacturer:

Pfizer Italia S.r.l., Ascoli Piceno, Italy

BOTSWANA: S2

Reg. No.: BOT1302406A (30 Caps)

Reg. No.: BOT1302406B (100 Caps)

NAMIBIA: S4

Reg. No.: 06/20.1.1/0255