LOCAL PRODUCT DOCUMENT
 PT. PFIZER INDONESIA

Generic Name: Isavuconazonium sulfate
Trade Name: CRESEMBA
EUSPC Effective Date: August 30, 2018
Supersedes: NA

1. Name of the Medicinal Product

1.1 Product name

CRESEMBA

1.2 Strength

100 mg

1.3 Pharmaceutical dosage form

Hard capsules

2. Quality and Quantitative Composition

For the full list of excipients, see section 6.1.

Each capsule contains 100 mg isavuconazole (as 186.3 mg isavuconazonium sulfate).

3. Pharmaceutical Form

Hard capsule

Swedish Orange (reddish-brown) capsule body marked with " 100 " in black ink and a white cap marked with "C" in black ink. Capsules length: 24.2 mm .

4. Clinical Particulars

4.1 Therapeutic indication

CRESEMBA is indicated in adults for the treatment of

- mucormycosis in patients for whom amphotericin B is inappropriate (see sections 4.4 and 5.1)

Consideration should be given to official guidance on the appropriate use of antifungal agents.

Usage

Specimens for fungal culture and other relevant laboratory studies (including histopathology) to isolate and identify causative organism(s) should be obtained prior to initiating antifungal therapy. Therapy may be instituted before the results of the cultures and other laboratory studies are known depending on national guideline. However, once these results become available, antifungal therapy should be adjusted accordingly.

4.2 Posology and method of administration

Posology

Loading dose

The recommended loading dose is two capsules (equivalent to 200 mg of isavuconazole) every 8 hours for the first 48 hours (6 administrations in total).

Maintenance dose

The recommended maintenance dose is two capsules (equivalent to 200 mg of isavuconazole) once daily, starting 12 to 24 hours after the last loading dose.

Duration of therapy should be determined by the clinical response (see section 5.1).

For long-term treatment beyond 6 months, the benefit-risk balance should be carefully considered (see sections 5.1 and 5.3).

Switch to intravenous infusion

CRESEMBA is also available as powder for concentrate for solution for infusion containing 200 mg isavuconazole, equivalent to 372 mg isavuconazonium sulfate.

On the basis of the high oral bioavailability (98%, see section 5.2), switching between

Elderly

No dose adjustment is necessary for elderly patients; however the clinical experience in elderly patients is limited.

Renal impairment

No dose adjustment is necessary in patients with renal impairment, including patients with endstage renal disease (see section 5.2).

Hepatic impairment

No dose adjustment is necessary in patients with mild or moderate hepatic impairment (ChildPugh Classes A and B) (see sections 4.4 and 5.2).

CRESEMBA has not been studied in patients with severe hepatic impairment (Child-Pugh Class C). Use in these patients is not recommended unless the potential benefit is considered to outweigh the risks. See sections 4.4, 4.8 and 5.2.

Paediatric population

The safety and efficacy of CRESEMBA in children aged below 18 years has not yet been established. No data are available.

Method of administration

CRESEMBA capsules can be taken with or without food.
CRESEMBA capsules should be swallowed whole. Do not chew, crush, dissolve or open the capsules.

4.3 Contraindications

Hypersensitivity to the active substance or to any of the excipients listed in section 6.1.

Co-administration with ketoconazole (see section 4.5).

Co-administration with high dose ritonavir (>200 mg every 12 hours) (see section 4.5).

Co-administration with strong CYP3A4/5 inducers such as rifampicin, rifabutin, carbamazepine, long-acting barbiturates (e.g. phenobarbital), phenytoin and St. John's wort or with moderate CYP3A4/5 inducers such as efavirenz, nafcillin and etravirine (see section 4.5).

Patients with familial short QT syndrome (see section 4.4).

4.4 Special warning and precautions for use

Hypersensitivity

Caution should be used in prescribing isavuconazole to patients with hypersensitivity to other azole antifungal agents. Hypersensitivity to isavuconazole may result in adverse reactions that include: hypotension, respiratory failure, dyspnoea, drug eruption, pruritus, and rash.

Severe cutaneous adverse reactions

Severe cutaneous adverse reactions, such as Stevens-Johnson syndrome, have been reported during treatment with azole antifungal agents. If a patient develops a severe cutaneous adverse reaction, CRESEMBA should be discontinued.

Cardiovascular

QT shortening

CRESEMBA is contraindicated in patients with familial short QT syndrome (see section 4.3). In a QT study in healthy human subjects, isavuconazole shortened the QTc interval in a concentration-related manner. For the 200 mg dosing regimen, the least squares mean (LSM) difference from placebo was 13.1 ms at 2 hours post dose [$90 \% \mathrm{CI}: 17.1,9.1 \mathrm{~ms}$]. Increasing the dose to 600 mg resulted in an LSM difference from placebo of 24.6 ms at 2 hours post dose [$90 \% \mathrm{CI}: 28.7,20.4 \mathrm{~ms}]$.

Caution is warranted when prescribing CRESEMBA to patients taking other medicinal products known to decrease the QT interval, such as rufinamide.

Elevated liver transaminases

Elevated liver transaminases have been reported in clinical studies (see section 4.8). The elevations in liver transaminases rarely required discontinuation of CRESEMBA. Monitoring of hepatic enzymes should be considered, as clinically indicated.

Severe hepatic impairment

CRESEMBA has not been studied in patients with severe hepatic impairment (Child-Pugh Class C). Use in these patients is not recommended unless the potential benefit is considered to outweigh the risks. These patients should be carefully monitored for potential drug toxicity. See sections 4.2, 4.8 and 5.2.

Concomitant use with other medicinal products

CYP3A4/5 inhibitors

Ketoconazole is contraindicated (see section 4.3). For the strong CYP3A4 inhibitor lopinavir/ritonavir, a two-fold increase in isavuconazole exposure was observed. For other strong CYP3A4/5 inhibitors, a less pronounced effect can be expected. No dose adjustment of CRESEMBA is necessary when co-administered with strong CYP3A4/5 inhibitors, however caution is advised as adverse drug reactions may increase (see section 4.5).

CYP3A4/5 inducers

Co-administration with mild CYP3A4/5 inducers such as aprepitant, prednisone, and pioglitazone, may result in mild to moderate decreases of isavuconazole plasma levels; coadministration with mild CYP3A4/5 inducers should be avoided unless the potential benefit is considered to outweigh the risk (see section 4.5).

CYP3A4/5 substrates including immunosuppressants

Isavuconazole can be considered a moderate inhibitor of CYP3A4/5, and systemic exposure to medicinal products metabolised by CYP3A4 may be increased when co-administered with CRESEMBA. Concomitant use of CRESEMBA with CYP3A4 substrates such as the immunosuppressants tacrolimus, sirolimus or ciclosporin may increase the systemic exposure to these medicinal products. Appropriate therapeutic drug monitoring and dose adjustment may be necessary during co-administration (see section 4.5).

CYP2B6 substrates

Isavuconazole is an inducer of CYP2B6. Systemic exposure to medicinal products metabolised by CYP2B6 may be decreased when co-administered with CRESEMBA. Therefore, caution is advised when CYP2B6 substrates, especially medicinal products with a narrow therapeutic
index such as cyclophosphamide, are co-administered with CRESEMBA. The use of the CYP2B6 substrate efavirenz with CRESEMBA is contraindicated because efavirenz is a moderate inducer of CYP3A4/5 (see section 4.3).

P-gp substrates

Isavuconazole may increase the exposure of medicinal products that are P-gp substrates. Dose adjustment of medicinal products that are P-gp substrates, especially medicinal products with a narrow therapeutic index such as digoxin, colchicine and dabigatran etexilate, may be needed when concomitantly administered with CRESEMBA (see section 4.5).

Limitations of the clinical data

The clinical data for isavuconazole in the treatment of mucormycosis are limited to one prospective non-controlled clinical study in 37 patients with proven or probable mucormycosis who received isavuconazole for primary treatment, or because other antifungal treatments (predominantly amphotericin B) were inappropriate.

For individual Mucorales species, the clinical efficacy data are very limited, often to one or two patients (see section 5.1). Susceptibility data were available in only a small subset of cases. These data indicate that concentrations of isavuconazole required for inhibition in vitro are very variable between genera/species within the order of Mucorales, and generally higher than concentrations required to inhibit Aspergillus species. It should be noted that there was no dosefinding study in mucormycosis, and patients were administered the same dose of isavuconazole as was used for the treatment of invasive aspergillosis.

4.5 Interaction with other medicinal products and other forms of interactions

Potential of medicinal products to affect the pharmacokinetics of isavuconazole

Isavuconazole is a substrate of CYP3A4 and CYP3A5 (see section 5.2). Co-administration of medicinal products which are inhibitors of CYP3A4 and/or CYP3A5 may increase the plasma concentrations of isavuconazole. Co-administration of medicinal products which are inducers of CYP3A4 and/or CYP3A5 may decrease the plasma concentrations of isavuconazole.

Medicinal products that inhibit CYP3A4/5

Co-administration of CRESEMBA with the strong CYP3A4/5 inhibitor ketoconazole is contraindicated, since this medicinal product can significantly increase plasma concentrations of

For the strong CYP3A4 inhibitor lopinavir/ritonavir, a two-fold increase in isavuconazole exposure was observed. For other strong CYP3A4 inhibitors, such as clarithromycin, indinavir and saquinavir, a less pronounced effect can be expected, based on their relative potency. No dose adjustment of CRESEMBA is necessary when co-administered with strong CYP3A4/5 inhibitors, however caution is advised as adverse drug reactions may increase (see section 4.4).

No dose adjustment is warranted for moderate to mild CYP3A4/5 inhibitors.

Medicinal products that induce CYP3A4/5

Co-administration of CRESEMBA with potent CYP3A4/5 inducers such as rifampicin, rifabutin, carbamazepine, long-acting barbiturates (e.g., phenobarbital), phenytoin and St. John's wort, or with moderate CYP3A4/5 inducers such as efavirenz, nafcillin and etravirine, is contraindicated, since these medicinal products can significantly decrease plasma concentrations of isavuconazole (see section 4.3).

Co-administration with mild CYP3A4/5 inducers such as aprepitant, prednisone and pioglitazone, may result in mild to moderate decreases of isavuconazole plasma levels; co-administration with mild CYP3A4/5 inducers should be avoided unless the potential benefit is considered to outweigh the risk (see section 4.4).

Co-administration with high-dose ritonavir ($>200 \mathrm{mg}$ twice daily) is contraindicated, as at high doses ritonavir may induce CYP3A4/5 and decrease isavuconazole plasma concentrations (see section 4.3).

Potential for CRESEMBA to affect exposures of other medicines

Medicinal products metabolised by CYP3A4/5

Isavuconazole is a moderate inhibitor of CYP3A4/5; co-administration of CRESEMBA with medicinal products which are substrates of CYP3A4/5 may result in increased plasma concentrations of these medicinal products.

Medicinal products metabolised by CYP2B6

Isavuconazole is a mild CYP2B6 inducer; co-administration of CRESEMBA may result in decreased plasma concentrations of CYP2B6 substrates.

Medicinal products transported by P-gp in the intestine

Isavuconazole is a mild inhibitor of P-glycoprotein (P-gp); co-administration with CRESEMBA may result in increased plasma concentrations of P -gp substrates.

Medicinal products transported by BCRP

Isavuconazole is an inhibitor in vitro of BCRP, and plasma concentrations of substrates of BCRP may therefore be increased. Caution is advised when CRESEMBA is given concomitantly with substrates of BCRP.

Medicinal products renally excreted via transport proteins

Isavuconazole is a mild inhibitor of the organic cation transporter 2 (OCT2). Co-administration of CRESEMBA with medicinal products which are substrates of OCT2 may result in increased plasma concentrations of these medicinal products.

Uridine diphosphate-glucuronosyltransferases (UGT) substrates

Isavuconazole is a mild inhibitor of UGT. Co-administration of CRESEMBA with medicinal products which are substrates of UGT may result in mildly increased plasma concentrations of these medicinal products.

Interaction table

Interactions between isavuconazole and co-administered medicinal products are listed in Table 1 (increase is indicated as " \uparrow ", decrease as " \downarrow "), ordered by therapeutic class. Unless otherwise stated, studies detailed in Table 1 have been performed with the recommended dose of CRESEMBA.

Table 1 Interactions
$\left.\left.\begin{array}{|l|l|l|}\hline \begin{array}{l}\text { Co-administered medicinal } \\ \text { product by therapeutic area }\end{array} & \begin{array}{l}\text { Effects on drug concentrations/ } \\ \text { Geometric Mean Change (\%) in } \\ \text { AUC, C }\end{array} \\ \text { (Mode of action) }\end{array}\right) ~ \begin{array}{l}\text { Recommendation concerning } \\ \text { co-administration }\end{array}\right]$

Antibacterials		
Rifampicin (strong CYP3A4/5 inducer)	Isavuconazole: AUC $_{\text {tau }}: \downarrow 90 \%$ $\mathrm{C}_{\max }: \downarrow 75 \%$ (CYP3A4/5 induction)	The concomitant administration of CRESEMBA and rifampicin is contraindicated.
Rifabutin (strong CYP3A4/5 inducer)	Not studied. Isavuconazole concentrations may significantly decrease. (CYP3A4/5 induction)	The concomitant administration of CRESEMBA and rifabutin is contraindicated.
Nafcillin (moderate CY3A4/5 inducer)	Not studied. Isavuconazole concentrations may significantly decrease. (CYP3A4/5 induction)	The concomitant administration of CRESEMBA and nafcillin is contraindicated.
Clarithromycin (strong CYP3A4/5 inhibitor)	Not studied. Isavuconazole concentrations may increase. (CYP3A4/5 inhibition)	No CRESEMBA dose adjustment necessary; caution is advised as adverse drug reactions may increase.
Antifungals		
Ketoconazole (strong CYP3A4/5 inhibitor)	Isavuconazole: AUC $_{\text {tau: }} \uparrow \uparrow 422 \%$ $\mathrm{C}_{\text {max }}: \uparrow 9 \%$ (CYP3A4/5 inhibition)	The concomitant administration of CRESEMBA and ketoconazole is contraindicated.
Herbal medicines		
St. John's wort (strong CYP3A4/5 inducer)	Not studied. Isavuconazole concentrations may significantly decrease. (CYP3A4 induction).	The concomitant administration of CRESEMBA and St. John's wort is contraindicated.
Immunosuppressants		
Ciclosporin, sirolimus, tacrolimus (CYP3A4/5 substrates)	Ciclosporin: AUC $_{\text {inf: }} \uparrow$ 29\% $\mathrm{C}_{\text {max }} \uparrow$. 6% Sirolimus: AUC $_{\text {inf: }} \uparrow 84 \%$ $\mathrm{C}_{\text {max }}: \uparrow 65 \%$ Tacrolimus: $\mathrm{AUC}_{\text {inf: }} \uparrow 125 \%$ $\mathrm{C}_{\text {max }}: \uparrow 42 \%$ (CYP3A4 inhibition)	No CRESEMBA dose adjustment necessary. Ciclosporin, sirolimus, tacrolimus: monitoring of plasma levels and appropriate dose adjustment if required.
Mycophenolate mofetil (MMF) (UGT substrate)	Mycophenolic acid (MPA, active metabolite): AUC $_{\text {inf }} \uparrow$ 个 35% $\mathrm{C}_{\text {max }}: \downarrow 11 \%$ (UGT inhibition)	No CRESEMBA dose adjustment necessary. MMF: monitoring for MPArelated toxicities is advised.

Prednisone (CYP3A4 substrate)	Prednisolone (active metabolite): $\mathrm{AUC}_{\text {inf: }} \uparrow 8 \%$ $\mathrm{C}_{\text {max }} \downarrow 4 \%$ (CYP3A4 inhibition) Isavuconazole concentrations may decrease. (CYP3A4/5 induction)	Co-administration should be avoided unless the potential benefit is considered to outweigh the risk.
Opioids		
Short-acting opiates (alfentanil, fentanyl) (CYP3A4/5 substrate)	Not studied. Short-acting opiate concentrations may increase. (CYP3A4/5 inhibition).	No CRESEMBA dose adjustment necessary. Short-acting opiates (alfentanil, fentanyl): careful monitoring for any occurrence of drug toxicity, and dose reduction if required.
Methadone (CYP3A4/5, 2B6 and 2C9 substrate)	S-methadone (inactive opiate isomer) AUC $_{\text {inf: }} \downarrow 35 \%$ $\mathrm{C}_{\text {max }} \uparrow$ 1\% 40% reduction in terminal half-life R-methadone (active opiate isomer). $\mathrm{AUC}_{\text {inf: }} \downarrow 10 \%$ $\mathrm{C}_{\text {max }} \uparrow \uparrow 4 \%$ (CYP2B6 induction)	No CRESEMBA dose adjustment necessary. Methadone: no dose adjustment required.
Anti-cancer		
Vinca alkaloids (vincristine, vinblastine) (P-gp substrates)	Not studied. Vinca alkaloid concentrations may increase. (P-gp inhibition)	No CRESEMBA dose adjustment necessary. Vinca alkaloids: careful monitoring for any occurrence of drug toxicity, and dose reduction if required.
Cyclophosphamide (CYP2B6 substrate)	Not studied. Cyclophosphamide concentrations may decrease. (CYP2B6 induction)	No CRESEMBA dose adjustment necessary. Cyclophosphamide: careful monitoring for any occurrence of lack of efficacy, and dose increase if required.
$\begin{aligned} & \hline \text { Methotrexate } \\ & \text { (BCRP, OAT1, OAT3 } \\ & \text { substrate) } \end{aligned}$	Methotrexate: $\mathrm{AUC}_{\text {inf: }} \downarrow 3 \%$ $\mathrm{C}_{\text {max }}$: $\downarrow 11 \%$ 7-hydroxymetabolite: $\mathrm{AUC}_{\text {inf: }} \uparrow$. 29% $\mathrm{C}_{\text {max }}: \uparrow 15 \%$ (Mechanism unknown)	No CRESEMBA dose adjustment necessary. Methotrexate: no dose adjustment required.

Other anticancer agents (daunorubicin, doxorubicin, imatinib, irinotecan, lapatinib, mitoxantrone, topotecan) (BCRP substrates)	Not studied. Daunorubicin, doxorubicin, imatinib, irinotecan, lapatinib, mitoxantrone, topotecan concentrations may increase. (BCRP inhibition)	No CRESEMBA dose adjustment necessary. Daunorubicin, doxorubicin, imatinib, irinotecan, lapatinib, mitoxantrone or topotecan: careful monitoring for any occurrence of drug toxicity, and dose reduction if required.
Antiemetics		
Aprepitant (mild CYP3A4/5 inducer)	Not studied. Isavuconazole concentrations may decrease. (CYP3A4/5 induction)	Co-administration should be avoided unless the potential benefit is considered to outweigh the risk.
Antidiabetics		
Metformin (OCT1, OCT2 and MATE1 substrate)	Metformin: $\mathrm{AUC}_{\text {inf: }} \uparrow 52 \%$ $\mathrm{C}_{\text {max }} \uparrow \uparrow 23 \%$ (OCT2 inhibition)	No CRESEMBA dose adjustment necessary. Metformin: dose reduction may be required.
Repaglinide (CYP2C8 and OATP1B1 substrate)	Repaglinide: $\mathrm{AUC}_{\text {inf: }} \downarrow 8 \%$ $\mathrm{C}_{\text {max }}: \downarrow 14 \%$	No CRESEMBA dose adjustment necessary. Repaglinide: no dose adjustment required.
Anticoagulants		
Dabigatran etexilate (P-gp substrate)	Not studied. Dabigatran etexilate concentrations may increase. (P-gp inhibition).	No CRESEMBA dose adjustment necessary. Dabigatran etexilate has a narrow therapeutic index and should be monitored, and dose reduction if required.
Warfarin (CYP2C9 substrate)	S-warfarin $\mathrm{AUC}_{\text {inf: }} \uparrow 11 \%$ $\mathrm{C}_{\text {max }}: \downarrow 12 \%$ R-warfarin AUC $_{\text {inf: }} \uparrow$ 20\% $\mathrm{C}_{\text {max }}$: $\downarrow 7 \%$	No CRESEMBA dose adjustment necessary. Warfarin: no dose adjustment required.
Antiretroviral agents		
Lopinavir 400 mg / Ritonavir 100 mg (CYP3A4/5 strong inhibitors and substrates)	Lopinavir: $\mathrm{AUC}_{\text {tau }}: \downarrow 27 \%$ $\mathrm{C}_{\text {max }}$: $\downarrow 23 \%$ $\mathrm{C}_{\text {min }}$, ss: $\downarrow 16 \%^{\mathrm{a}}$) Ritonavir: $\mathrm{AUC}_{\text {tau }}: \downarrow 31 \%$ $\mathrm{C}_{\text {max }}$: $\downarrow 33 \%$ (Mechanism unknown) Isavuconazole: AUC $_{\text {tau }}$: $\uparrow 96 \%$ $\mathrm{C}_{\text {max }}: \uparrow 74 \%$ (CYP3A4/5 inhibition)	No CRESEMBA dose adjustment necessary; caution is advised as adverse drug reactions may increase. Lopinavir/ritonavir: no dose adjustment for lopinavir 400 mg / ritonavir 100 mg every 12 hours required, but careful monitoring for any occurrence of lack of anti-viral efficacy.

Ritonavir (at doses >200 mg every 12 hours) (strong CYP3A4/5 inducer)	Not studied. Ritonavir at high doses may significantly decrease isavuconazole concentrations. (CYP3A4/5 induction)	The concomitant administration of CRESEMBA and high doses of ritonavir (>200 mg every 12 hours) is contraindicated.
Efavirenz (CYP3A4/5 moderate inducer and CYP2B6 substrate)	Not studied. Efavirenz concentrations may decrease. (CYP2B6 induction) Isavuconazole drug concentrations may significantly decrease. (CYP3A4/5 induction)	The concomitant administration of CRESEMBA and efavirenz is contraindicated.
Etravirine (moderate CYP3A4/5 inducer)	Not studied. Isavuconazole concentrations may significantly decrease. (CYP3A4/5 induction)	The concomitant administration of CRESEMBA and etravirine is contraindicated.
Indinavir (CYP3A4/5 strong inhibitor and substrate)	Indinavir: ${ }^{\text {b }}$) AUC $_{\text {inf: }} \downarrow 36 \%$ $\mathrm{C}_{\text {max }} \downarrow 52 \%$ (Mechanism unknown) Isavuconazole concentrations may increase. (CYP3A4/5 inhibition)	No CRESEMBA dose adjustment necessary; caution is advised as adverse drug reactions may increase. Indinavir: careful monitoring for any occurrence of lack of antiviral efficacy, and dose increase if required.
Saquinavir (strong CYP3A4 inhibitor)	Not studied. Saquinavir concentrations may decrease (as observed with lopinavir/ritonavir) or increase (CYP3A4 inhibition). Isavuconazole concentrations may increase. (CYP3A4/5 inhibition).	No CRESEMBA dose adjustment necessary; caution is advised as adverse drug reactions may increase. Saquinavir: careful monitoring for any occurrence of drug toxicity and/or lack of anti-viral efficacy, and dose adjustment if required
Other protease inhibitors (e.g., amprenavir, nelfinavir) (CYP3A4/5 strong or moderate inhibitors and substrates)	Not studied. Protease inhibitor concentrations may decrease (as observed with lopinavir/ritonavir) or increase. (CYP3A4 inhibition) Isavuconazole concentrations may increase. (CYP3A4/5 inhibition).	No CRESEMBA dose adjustment necessary. Protease inhibitors: careful monitoring for any occurrence of drug toxicity and/or lack of antiviral efficacy, and dose adjustment if required.

Other NNRTI (e.g., delavirdine, and nevirapine) (CYP3A4/5 and 2B6 inducers and substrates)	Not studied. NNRTI concentrations may decrease (CYP2B6 induction by isavuconazole) or increase. (CYP3A4/5 inhibition)	No CRESEMBA dose adjustment necessary. NNRTIs: careful monitoring for any occurrence of drug toxicity and/or lack of anti-viral efficacy, and dose adjustment if required.
Antiacids		
Esomeprazole (CYP2C19 substrate and gastric $\mathrm{pH} \uparrow$)	Isavuconazole: AUC $_{\text {tau: }} \uparrow$ 个 8% $\mathrm{C}_{\text {max }} \uparrow$. 5%	No CRESEMBA dose adjustment necessary. Esomeprazole: no dose adjustment required.
Omeprazole (CYP2C19 substrate and gastric $\mathrm{pH} \uparrow$)	Omeprazole: $\mathrm{AUC}_{\text {inf }} \downarrow 11 \%$ $\mathrm{C}_{\text {max }}: \downarrow 23 \%$	No CRESEMBA dose adjustment necessary. Omeprazole: no dose adjustment required.
Lipid-lowering agents		
Atorvastatin and other statins (CYP3A4 substrates e.g., simvastatin, lovastatin, rosuvastatin) (CYP3A4/5 and/or BCRP substrates))	Atorvastatin: $\mathrm{AUC}_{\text {inf: }} \uparrow 37 \%$ $\mathrm{C}_{\text {max }}$: \uparrow 3\% Other statins were not studied. Statins concentrations may increase. (CYP3A4/5 or BCRP inhibition)	No CRESEMBA dose adjustment necessary. Based on results with atorvastatin, no statin dose adjustment required. Monitoring of adverse reactions typical of statins is advised.
Pioglitazone (mild CYP3A4/5 inducer)	Not studied. Isavuconazole concentrations may decrease. (CYP3A4/5 induction)	Co-administration should be avoided unless the potential benefit is considered to outweigh the risk.
Antiarrhythmics		
$\begin{aligned} & \text { Digoxin } \\ & \text { (P-gp substrate) } \end{aligned}$	Digoxin: $\mathrm{AUC}_{\text {inf: }} \uparrow 25 \%$ $\mathrm{C}_{\text {max }}: \uparrow 33 \%$ (P-gp inhibition)	No CRESEMBA dose adjustment necessary. Digoxin: serum digoxin concentrations should be monitored and used for titration of the digoxin dose.
Oral contraceptives		
Ethinyl oestradiol and Norethindrone (CYP3A4/5 substrates)	Ethinyl oestradiol $\mathrm{AUC}_{\text {inf: }} \uparrow 8 \%$ $\mathrm{C}_{\text {max }}: \uparrow 14 \%$ Norethindrone $\mathrm{AUC}_{\text {inf: }} \uparrow 16 \%$ $\mathrm{C}_{\text {max }}: \uparrow 6 \%$	No CRESEMBA dose adjustment necessary. Ethinyl oestradiol and Norethindrone: no dose adjustment required.
Antitussives		
Dextromethorphan (CYP2D6 substrate)	Dextromethorphan: AUC $_{\text {inf: }} \uparrow 18 \%$ $\mathrm{C}_{\text {max }}$: $\uparrow 17 \%$ Dextrorphan (active metabolite): $\mathrm{AUC}_{\text {inf: }} \uparrow 4 \%$ $\mathrm{C}_{\text {max }} \downarrow$ 2\%	No CRESEMBA dose adjustment necessary. Dextromethorphan: no dose adjustment required.
Benzodiazepines		
Midazolam (CYP3A4/5 substrate)	Oral midazolam: $\mathrm{AUC}_{\text {inf: }} \uparrow 103 \%$ $\mathrm{C}_{\text {max }} \uparrow \uparrow 72 \%$	No CRESEMBA dose adjustment necessary. Midazolam: careful monitoring of clinical signs and symptoms

Approved by BPOM: December 29 ${ }^{\text {th }}, 2020$

	(CYP3A4 inhibition)	recommended, and dose reduction if required.
Antigout agent		
Colchicine (P-gp substrate)	Not studied. Colchicine concentrations may increase. (P-gp inhibition)	No CRESEMBA dose adjustment necessary. Colchicine has a narrow therapeutic index and should be monitored, dose reduction if required.
Natural products		
Caffeine (CYP1A2 substrate)	Caffeine: $\mathrm{AUC}_{\text {inf: }} \uparrow 4 \%$ $\mathrm{C}_{\text {max }} \downarrow 1 \%$	No CRESEMBA dose adjustment necessary. Caffeine: no dose adjustment required.
Smoking cessation aids		
Bupropion (CYP2B6 substrate)	Buproprion: $\mathrm{AUC}_{\text {inf: }} \downarrow 42 \%$ $\mathrm{C}_{\text {max }}: \downarrow 31 \%$ (CYP2B6 induction)	No CRESEMBA dose adjustment necessary. Bupropion: dose increase if required.

NNRTI, non-nucleoside reverse-transcriptase inhibitor; P-gp, P-glycoprotein.
a) $\%$ decrease of the mean trough level values
${ }^{\text {b) }}$ Indinavir was only studied after a single dose of 400 mg isavuconazole.
$\mathrm{AUC}_{\text {inf }}=$ area under the plasma concentration-time profiles extrapolated to infinity; $\mathrm{AUC}_{\text {tau }}=$ area under the plasma concentration-time profiles during the 24 h interval at steady state; $\mathrm{C}_{\max }=$ peak plasma concentration;
$\mathrm{C}_{\text {min,ss }}=$ trough levels at steady state.

4.6 Pregnancy and lactation

Pregnancy

There are no data from the use of CRESEMBA in pregnant women.
Studies in animals have shown reproductive toxicity (see section 5.3). The potential risk for humans is unknown.

CRESEMBA must not be used during pregnancy except in patients with severe or potentially life-threatening fungal infections, in whom isavuconazole may be used if the anticipated benefits outweigh the possible risks to the foetus.

Women of child-bearing potential

CRESEMBA is not recommended for women of childbearing potential who are not using contraception.

Available pharmacodynamic/toxicological data in animals have shown excretion of isavuconazole/metabolites in milk (see section 5.3).

A risk to newborns and infants cannot be excluded.

Breast-feeding should be discontinued during treatment with CRESEMBA.

Fertility

There are no data on the effect of isavuconazole on human fertility. Studies in animals did not show impairment of fertility in male or female rats (see section 5.3).

4.7 Effects on ability to drive and use machine

Isavuconazole has a moderate potential to influence the ability to drive and use machines. Patients should avoid driving or operating machinery if symptoms of confusional state, somnolence, syncope, and/or dizziness are experienced.

4.8 Undesirable effects

Summary of the safety profile

The frequency of adverse reactions shown in Table 2 is based on data from 403 patients with invasive fungal infections treated with CRESEMBA in phase 3 studies.

The most common treatment-related adverse reactions were elevated liver chemistry tests (7.9\%), nausea (7.4\%), vomiting (5.5\%), dyspnoea (3.2\%), abdominal pain (2.7\%), diarrhoea (2.7%), injection site reaction (2.2%), headache (2.0%), hypokalaemia (1.7%) and rash (1.7%).

The adverse reactions which most often led to permanent discontinuation of CRESEMBA treatment were confusional state (0.7%), acute renal failure (0.7%), increased blood bilirubin (0.5%), convulsion (0.5%), dyspnoea (0.5%), epilepsy (0.5%), respiratory failure (0.5%) and vomiting (0.5%).

Table 2 presents adverse reactions with isavuconazole in the treatment of invasive fungal infections, by System Organ Class and frequency.

The frequency of adverse reactions is defined as follows: very common $(\geq 1 / 10)$; common ($\geq 1 / 100$ to $<1 / 10$); and uncommon ($\geq 1 / 1,000$ to $<1 / 100$).

Within each frequency grouping, adverse reactions are presented in order of decreasing seriousness.

Table 2 Summary of adverse reactions by MedDRA System Organ Class and frequency

System Orga Class	Adverse Drug Reactions
Blood and lymphatic system disorders	
Uncommon	Neutropenia; Thrombocytopenia^; Pancytopenia; Leukopenia^; Anaemia^
Immune system disorders	
Uncommon	Hypersensitivity^
Metabolism and nutrition disorders	
Common	Hypokalaemia; Decreased appetite
Uncommon	Hypomagnesaemia; Hypoglycaemia; Hypoalbuminaemia; Malnutrition^
Psychiatric disorders	
Common	Delirium ${ }^{\text {\# }}$
Uncommon	Depression; Insomnia^
Nervous system disorders	
Common	Headache; Somnolence
Uncommon	Convulsion^; Syncope; Dizziness ; Paraesthesia^; Encephalopathy; Presyncope; Neuropathy peripheral; Dysgeusia
Ear and labyrinth disorders	
Uncommon	Vertigo
Cardiac disorders	
Uncommon	Atrial fibrillation; Tachycardia; Bradycardia^; Palpitations Atrial flutter; Electrocardiogram QT shortened; Supraventricular tachycardia; Ventricular extrasystoles; Supraventricular extrasystoles
Vascular disorders	
Common	Thrombophlebitis^
Uncommon	Circulatory collapse; Hypotension
Respiratory, thoracic and mediastinal disorders	
Common	Dyspnoea^; Acute respiratory failure^
Uncommon	Bronchospasm; Tachypnoea; Haemoptysis; Epistaxis
Gastrointestinal disorders	
Common	Vomiting; Diarrhoea; Nausea; Abdominal pain^;
Uncommon	Dyspepsia; Constipation; Abdominal distension
Hepatobiliary disorders	
Common	Elevated liver chemistry tests^\#
Uncommon	Hepatomegaly
Skin and subcutaneous tissue disorders	
Common	Rash^; Pruritus
Uncommon	Petechiae; Alopecia; Drug eruption; Dermatitis^

Musculoskeletal and connective tissue disorders	
Uncommon	Back pain
Renal and urinary disorders	
Common	Renal failure
General disorders and administration site conditions	
Common	Chest pain^; Fatigue
Uncommon	Malaise; Asthenia

\wedge Indicates that grouping of appropriate preferred terms into a single medical concept occurred.
\# See section Description of selected adverse reactions below

Description of selected adverse reactions

Delirium includes reactions of confusional state.
Elevated liver chemistry tests includes events of alanine aminotransferase increased, aspartate aminotransferase increased, blood alkaline phosphatase increased, blood bilirubin increased, blood lactate dehydrogenase increased, gamma-glutamyltransferase increased, hepatic enzyme increased, hepatic function abnormal, hyperbilirubinemia, liver function test abnormal, and transaminases increased.

Laboratory effects

In a double-blind, randomized, active-controlled clinical study of 516 patients with invasive fungal disease caused by Aspergillus species or other filamentous fungi, elevated liver transaminases (alanine aminotransferase or aspartate aminotransferase) $>3 \times$ Upper Limit of Normal (ULN) were reported at the end of study treatment in 4.4% of patients who received CRESEMBA. Marked elevations of liver transaminases $>10 \times$ ULN developed in 1.2% of patients on isavuconazole.

Reporting of suspected adverse reactions

Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product.

4.9 Overdose

Symptoms

Symptoms reported more frequently at supratherapeutic doses of CRESEMBA (equivalent to isavuconazole $600 \mathrm{mg} /$ day) evaluated in a QT study than in the therapeutic dose group (equivalent to isavuconazole $200 \mathrm{mg} /$ day dose) included: headache, dizziness, paraesthesia, somnolence, disturbance in attention, dysgeusia, dry mouth, diarrhoea, oral hypoaesthesia, vomiting, hot flush, anxiety, restlessness, palpitations, tachycardia, photophobia and arthralgia.

Management of overdose

Isavuconazole is not removed by haemodialysis. There is no specific antidote for isavuconazole. In the event of an overdose, supportive treatment should be instituted.

5. Pharmacological Properties

5.1 Pharmacodynamic properties

Pharmacotherapeutic group: Antimycotics for systemic use, triazole derivatives, ATC code: J02AC05

Mechanism of action

Isavuconazole is the active moiety formed after oral or intravenous administration of isavuconazonium sulfate (see section 5.2).

Isavuconazole demonstrates a fungicidal effect by blocking the synthesis of ergosterol, a key component of the fungal cell membrane, through the inhibition of cytochrome P-450-dependent enzyme lanosterol 14-alpha-demethylase, responsible for the conversion of lanosterol to ergosterol. This results in an accumulation of methylated sterol precursors and a depletion of ergosterol within the cell membrane, thus weakening the structure and function of the fungal cell membrane.

Microbiology

In animal models of disseminated and pulmonary aspergillosis, the pharmacodynamic (PD) index important in efficacy is exposure divided by minimum inhibitory concentration (MIC) (AUC/MIC).

No clear correlation between in vitro MIC and clinical response for the different species (Aspergillus and Mucorales) could be established.

Concentrations of isavuconazole required to inhibit Aspergillus species and genera/species of the order Mucorales in vitro have been very variable. Generally, concentrations of isavuconazole required to inhibit Mucorales are higher than those required to inhibit the majority of Aspergillus species.

Clinical efficacy has been demonstrated for the following Aspergillus species: Aspergillus fumigatus, A. flavus, A. niger, and A. terreus (see further below).

Mechanism(s) of resistance

Reduced susceptibility to triazole antifungal agents has been associated with mutations in the fungal cyp $51 A$ and cyp $51 B$ genes coding for the target protein lanosterol 14-alpha-demethylase involved in ergosterol biosynthesis. Fungal strains with reduced in vitro susceptibility to isavuconazole have been reported, and cross-resistance with voriconazole and other triazole antifungal agents cannot be excluded.

Breakpoints

EUCAST MIC breakpoints are defined for the following species (susceptible S ; resistant R):

- Aspergillus fumigatus: $\mathrm{S} \leq 1 \mathrm{mg} / \mathrm{L}, \mathrm{R}>1 \mathrm{mg} / \mathrm{L}$
- Aspergillus nidulans: $\mathrm{S} \leq 0.25 \mathrm{mg} / \mathrm{L}, \mathrm{R}>0.25 \mathrm{mg} / \mathrm{L}$
- Aspergillus terreus: $\mathrm{S} \leq 1 \mathrm{mg} / \mathrm{L}, \mathrm{R}>1 \mathrm{mg} / \mathrm{L}$

There are currently insufficient data to set clinical breakpoints for other Aspergillus species.

Clinical efficacy and safety

Treatment of invasive aspergillosis

The safety and efficacy of isavuconazole for the treatment of patients with invasive aspergillosis was evaluated in a double-blind, active-controlled clinical study in 516 patients with invasive fungal disease caused by Aspergillus species or other filamentous fungi. In the intent-to-treat (ITT) population, 258 patients received isavuconazole and 258 patients received voriconazole. CRESEMBA was administered intravenously (equivalent to 200 mg isavuconazole) every 8 hours for the first 48 hours, followed by once-daily intravenous or oral treatment (equivalent to 200 mg isavuconazole). The protocol-defined maximum treatment duration was 84 days.
Median treatment duration was 45 days.

The overall response at end-of-treatment (EOT) in the myITT population (patients with proven and probable invasive aspergillosis based on cytology, histology, culture or galactomannan testing) was assessed by an independent blinded Data Review Committee. The myITT population comprised 123 patients receiving isavuconazole and 108 patients receiving voriconazole. The overall response in this population was $n=43(35 \%)$ for isavuconazole and n $=42(38.9 \%)$ for voriconazole. The adjusted treatment difference (voriconazole-isavuconazole) was 4.0 (95% confidence interval: $-7.9 ; 15.9$).

The all-cause mortality at Day 42 in this population was 18.7% for isavuconazole and 22.2% for voriconazole. The adjusted treatment difference (isavuconazole-voriconazole) was -2.7% (95% confidence interval: -12.9; 7.5).

Treatment of mucormycosis

In an open-label non-controlled study, 37 patients with proven or probable mucormycosis received isavuconazole at the same dose regimen as that used to treat invasive aspergillosis. Median treatment duration was 84 days for the overall mucormycosis patient population, and 102 days for the 21 patients not previously treated for mucormycosis. For patients with probable or proven mucormycosis as defined by the independent Data Review Committee (DRC), allcause mortality at Day 84 was 43.2% (16/37) for the overall patient population, $42.9 \%(9 / 21)$ for mucormycosis patients receiving isavuconazole as primary treatment, and 43.8% ($7 / 16$) for mucormycosis patients receiving isavuconazole who were refractory to, or intolerant of, prior antifungal therapy (mainly amphotericin B-based treatments). The DRC-assessed overall success rate at EOT was $11 / 35$ (31.4\%), with 5 patients considered completely cured and 6 patients partially cured. A stable response was observed in an additional 10/35 patients (28.6\%). In 9 patients with mucormycosis due to Rhizopus spp., 4 patients showed a favourable response to isavuconazole. In 5 patients with mucormycosis due to Rhizomucor spp., no favourable responses were observed. The clinical experience in other species is very limited (Lichtheimia spp. $\mathrm{n}=2$, Cunninghamella spp. $\mathrm{n}=1$, Actinomucor elegans $\mathrm{n}=1$).

Paediatric population

No data are available for the safety and efficacy of CRESEMBA in children aged below 18 years.

5.2 Pharmacokinetic properties

Isavuconazonium sulfate is a water-soluble prodrug that can be administered as an intravenous infusion or orally as hard capsules. Following administration, isavuconazonium sulfate is rapidly hydrolysed by plasma esterases to the active moiety isavuconazole; plasma concentrations of the prodrug are very low, and detectable only for a short time after intravenous dosing.

Absorption

Following oral administration of CRESEMBA in healthy subjects, the active moiety isavuconazole is absorbed and reaches maximum plasma concentrations ($\mathrm{C}_{\max }$) approximately 2-3 hours after single and multiple dosing (see Table 3).

Table 3 Steady state pharmacokinetic parameters of isavuconazole following oral
administration of CRESEMBA

Parameter Statistic	Isavuconazole 200 mg $(\mathbf{n}=\mathbf{3 7})$	Isavuconazole 600 mg $(\mathbf{n}=\mathbf{3 2})$
$\mathbf{C}_{\text {max }}(\mathbf{n g} / \mathbf{m L})$		
Mean	7499	20028
SD	1893.3	3584.3
CV \%	25.2	17.9
$\boldsymbol{t}_{\text {max }}(\mathbf{h})$		
Median	4.0	
Range	3.0 .0	
AUC (h•ng/mL)	$2.0-4.0$	352805
Mean	72018.5	
SD	121402	20.4
CV \%	35768.8	2.0

As shown in table 4 below, the absolute bioavailability of isavuconazole following oral administration of a single dose of CRESEMBA is 98%. Based on these findings, intravenous and oral dosing can be used interchangeably.

Table 4 Pharmacokinetic comparison for oral and intravenous dose (Mean)

	ISA 400 mg oral	ISA 400 mg i.v.
AUC (h•ng/mL)	189462.8	193906.8
CV \%	36.5	37.2
Half-life (h)	110	115

Effect of food on absorption

Oral administration of CRESEMBA equivalent to 400 mg isavuconazole with a high-fat meal reduced isavuconazole $\mathrm{C}_{\text {max }}$ by 9% and increased AUC by 9%. CRESEMBA can be taken with or without food.

Distribution

Isavuconazole is extensively distributed, with a mean steady state volume of distribution (V_{ss}) of approximately 450 L . Isavuconazole is highly bound ($>99 \%$) to human plasma proteins, predominantly to albumin.

Biotransformation

In vitro / in vivo studies indicate that CYP3A4, CYP3A5, and subsequently uridine diphosphate-glucuronosyltransferases (UGT), are involved in the metabolism of isavuconazole.

Following single doses of [cyano- $-{ }^{14} \mathrm{C}$] isavuconazonium and [pyridinylmethyl- ${ }^{14} \mathrm{C}$] isavuconazonium sulfate in humans, in addition to the active moiety (isavuconazole) and the inactive cleavage product, a number of minor metabolites were identified. Except for the active moiety isavuconazole, no individual metabolite was observed with an AUC $>10 \%$ of total 2018-0042667

Elimination

Following oral administration of radio-labelled isavuconazonium sulfate to healthy subjects, a mean of 46.1% of the radioactive dose was recovered in faeces, and 45.5% was recovered in urine.

Renal excretion of intact isavuconazole was less than 1% of the dose administered.

The inactive cleavage product is primarily eliminated by metabolism and subsequent renal excretion of the metabolites.

Linearity/non-linearity

Studies in healthy subjects have demonstrated that the pharmacokinetics of isavuconazole are proportional up to 600 mg per day.

Pharmacokinetics in special populations

Paediatric patients

The pharmacokinetics in paediatric patients (<18 years) have not yet been evaluated. No data are available.

Renal impairment

No clinically relevant changes were observed in the total $\mathrm{C}_{\text {max }}$ and AUC of isavuconazole in subjects with mild, moderate or severe renal impairment compared to subjects with normal renal function. Of the 403 patients who received CRESEMBA in the Phase 3 studies, 79 (20\%) of patients had an estimated glomerular filtration rate (GFR) less than $60 \mathrm{~mL} / \mathrm{min} / 1.73 \mathrm{~m}^{2}$. No dose adjustment is required in patients with renal impairment, including those patients with endstage renal disease. Isavuconazole is not readily dialysable (see section 4.2).

Hepatic impairment

After a single 100 mg dose of isavuconazole was administered to 32 patients with mild (ChildPugh Class A) hepatic insufficiency and 32 patients with moderate (Child-Pugh Class B) hepatic insufficiency (16 intravenous and 16 oral patients per Child-Pugh class), the least square mean systemic exposure (AUC) increased 64% in the Child-Pugh Class A group, and 84% in the Child-Pugh Class B group, relative to 32 age- and weight-matched healthy subjects with normal hepatic function. Mean plasma concentrations ($\mathrm{C}_{\max }$) were 2% lower in the Child-Pugh Class A group and 30% lower in the Child-Pugh Class B group. The population pharmacokinetic evaluation of isavuconazole in healthy subjects and patients with mild or moderate hepatic dysfunction demonstrated that the mild and moderate hepatic impairment
populations had 40% and 48% lower isavuconazole clearance (CL) values, respectively, than the healthy population.

No dose adjustment is required in patients with mild to moderate hepatic impairment.

CRESEMBA has not been studied in patients with severe hepatic impairment (Child-Pugh Class C). Use in these patients is not recommended unless the potential benefit is considered to outweigh the risks. See sections 4.2 and 4.4.

5.3 Preclinical safety data

In rats and rabbits, isavuconazole at systemic exposures below the therapeutic level were associated with dose-related increases in the incidence of skeletal anomalies (rudimentary supernumerary ribs) in offspring. In rats, a dose-related increase in the incidence of zygomatic arch fusion was also noted in offspring (see section 4.6).

Administration of isavuconazonium sulfate to rats at a dose of $90 \mathrm{mg} / \mathrm{kg} /$ day (2.3-fold the human maintenance dose [200 mg] based on $\mathrm{mg} / \mathrm{m}^{2} /$ day) during pregnancy through the weaning period showed an increased perinatal mortality of the pups. In utero exposure to the active moiety isavuconazole had no effect on the fertility of the surviving pups.

Intravenous administration of ${ }^{14} \mathrm{C}$-labelled isavuconazonium sulfate to lactating rats resulted in the recovery of radiolabel in the milk.

Isavuconazole did not affect the fertility of male or female rats treated with oral doses up to $90 \mathrm{mg} / \mathrm{kg} /$ day (2.3 -fold the clinical maintenance dose based on $\mathrm{mg} / \mathrm{m}^{2} /$ day comparisons).

Isavuconazole has no discernible mutagenic or genotoxic potential. Isavuconazole was negative in a bacterial reverse mutation assay, was weakly clastogenic at cytotoxic concentrations in the L5178Y tk+/- mouse lymphoma chromosome aberration assay, and showed no biologically relevant or statistically significant increase in the frequency of micronuclei in an in vivo rat micronucleus test.

No carcinogenicity studies have been performed.

Isavuconazole inhibited the hERG potassium channel and the L-type calcium channel with an IC_{50} of $5.82 \mu \mathrm{M}$ and $6.57 \mu \mathrm{M}$ respectively (34-and 38 -fold the human non-protein bound $\mathrm{C}_{\max }$ at maximum recommended human dose [MRHD], respectively).The in vivo 39-week repeateddose toxicology studies in monkeys did not show QTcF prolongation at doses up to
$40 \mathrm{mg} / \mathrm{kg} /$ day (2.1 -fold the recommended clinical maintenance dose, based on $\mathrm{mg} / \mathrm{m}^{2} /$ day comparisons).

Environmental risk assessment has shown that CRESEMBA may pose a risk for the aquatic environment.

6. Pharmaceutical Particulars

6.1 List of excipients

Capsule contents

magnesium citrate (anhydrous)
microcrystalline cellulose
talc
silica, colloidal anhydrous
stearic acid

6.2 Incompatibilities

Not applicable.

6.3 Shelf life

30 months

6.4 Special precautions for storage

Store below $30^{\circ} \mathrm{C}$. Store in the original packaging in order to protect from moisture.

6.5 Nature and contents of container

14 hard capsules (in two aluminum blisters), with each capsule pocket connected to a pocket with desiccant.

6.6 Special precautions for disposal

This medicinal product may pose a risk to the environment (see section 5.3).

Any unused medicinal product or waste material should be disposed of in accordance with local requirements.

Generic Name: Isavuconazonium sulfate
Trade Name: CRESEMBA
EUSPC Effective Date: August 30, 2018
Supersedes: NA
Approved by BPOM: December 29 ${ }^{\text {th }}, 2020$
7. Marketing Authorization Holder

Manufactured by:
SwissCo Services AG,
Bahnhofstrasse, Sisseln, Switzerland

Packaged and Released by:
Almac Pharma Services Limited,
Craigavon, United Kingdom

Imported by:
PT. Pfizer Indonesia,
Jakarta, Indonesia

8. Marketing Authorization Numbers

Box, 2 blisters @ 7 capsules; Reg. No.: DKI2057100101A1

HARUS DENGAN RESEP DOKTER

