SCHEDULING STATUS: S4

1. NAME OF THE MEDICINE

VFEND[®] 50 mg film-coated tablets

VFEND® 200 mg film-coated tablets

VFEND® IV 200 mg powder for solution for infusion

2. QUALITATIVE AND QUANTITATIVE COMPOSITION

Film-coated tablets

Each VFEND 50 mg and 200 mg film-coated tablet contains voriconazole 50 mg and 200 mg respectively.

Contains sugar (lactose monohydrate).

Powder for solution for infusion

Each VFEND IV 200 mg vial contains 200 mg voriconazole. When reconstituted as directed, each mL contains 10 mg voriconazole.

Sugar free.

Excipients with known effect

Film-coated tablets

Each VFEND 50 mg film-coated tablet contains 63,42 mg lactose monohydrate.

Each VFEND 200 mg film-coated tablet contains 253,675 mg lactose monohydrate.

Powder for solution for infusion

Each VFEND IV 200 mg vial contains 221 mg sodium.

Each VFEND IV 200 mg vial contains 3 200 mg cyclodextrin.

For the full list of excipients, see section 6.1.

3. PHARMACEUTICAL FORM

Film-coated tablets

VFEND 50 mg film-coated tablets are white to off-white, standard round convex tablets, debossed with "Pfizer" on one side and "VOR50" on the other.

VFEND 200 mg film-coated tablets are white to off-white, capsule-shaped tablets, debossed with "Pfizer" on one side and "VOR200" on the other.

Powder for solution for infusion

VFEND IV 200 mg powder for solution for infusion is a white lyophilised powder containing nominally 200 mg voriconazole presented in a 30 mL clear glass vial.

4. CLINICAL PARTICULARS

4.1 Therapeutic indications

- Treatment of invasive aspergillosis.
- Treatment of serious invasive infections caused by Candida spp (including C. krusei).
- VFEND has been used in the treatment of serious fungal infections caused by *Scedosporium* spp and *Fusarium* spp.
- Prevention of breakthrough of fungal infections in febrile high-risk patients (allogeneic bone marrow transplants, relapsed leukaemia patients) where liposomal amphotericin B cannot be used.
- Prophylaxis of invasive fungal infections in high risk allogeneic haematopoietic stem cell transplant (HSCT) recipients.

4.2 Posology and method of administration

Posology

Electrolyte disturbances such as hypokalaemia, hypomagnesaemia and hypocalcaemia should be corrected prior to initiation and during VFEND therapy (see section 4.4).

Adults

Therapy must be initiated with the specified loading dose regimen of either intravenous or oral VFEND to achieve plasma concentrations on Day 1 that are close to steady state. On the basis of the high oral bioavailability (96 %), switching between intravenous and oral administration is appropriate when clinically indicated.

Detailed information on dosage recommendations is provided in the following table:

	Intravenous	Oral	
		Patients 40 kg	Patients less
		and above	than 40 kg
Loading dose	6 mg/kg every 12	400 mg every 12 hours	200 mg every 12 hours
regimen for all	hours (for the first	(for the first 24 hours)	(for the first 24 hours)
indications	24 hours)		
(first 24 hours)			
Maintenance dose	3 – 4 mg/kg every	200 mg every 12 hours	100 mg every 12 hours
(after first 24 hours)	12 hours		
- Prophylaxis of			
invasive fungal			
infections			
- Prevention of			
breakthrough			
infections			
- Invasive	4 mg/kg every 12	200 mg every 12 hours	100 mg every 12 hours
aspergillosis,	hours		
serious Candida			
infections,			
Scedosporium/			
Fusarium			
infections			

Dosage adjustment

Powder for solution for infusion

If patient response is inadequate, the maintenance dose may be increased to 4 mg/kg every 12 hours for intravenous administration.

If patients are unable to tolerate treatment at these higher doses, reduce the intravenous dose to the original maintenance dose, 3 mg/kg every 12 hours.

Film-coated tablets

If patient response is inadequate, the maintenance dose may be increased to 300 mg every 12 hours for oral administration. For patients less than 40 kg the oral dose may be increased to 150 mg twice daily.

If patients are unable to tolerate treatment at these higher doses, reduce the oral dose by 50 mg steps to the 200 mg every 12 hours (or 100 mg every 12 hours for patients less than 40 kg) maintenance dose.

Powder for solution for infusion

Phenytoin may be co-administered with VFEND if the maintenance dose of VFEND is increased to 5 mg/kg intravenously every 12 hours (see sections 4.4 and 4.5).

Film-coated tablets

Phenytoin may be co-administered with VFEND if the maintenance dose of VFEND is increased from 200 mg to 400 mg orally, every 12 hours (100 mg to 200 mg orally, every 12 hours in patients less than 40 kg) (see sections 4.4 and 4.5).

When VFEND is co-administered with adjusted doses of efavirenz, VFEND maintenance dose should be increased to 400 mg every 12 hours (see sections 4.4 and 4.5).

Treatment duration depends upon patients' clinical and mycological response.

Prophylaxis in adults and children

Prophylaxis should be initiated on the day of transplant and may be administered for up to 100 days. It may only be continued up to 180 days after transplantation in case of continuing immunosuppression or graft versus host disease (GvHD) (see section 5.1).

Dosage

The recommended dosing regimen for prophylaxis is the same as for treatment in the respective age groups. Please refer to the treatment tables above.

Duration of prophylaxis

The safety and efficacy of VFEND use for longer than 180 days has not been adequately studied in clinical trials.

Special populations

Elderly

No dose adjustment is necessary for elderly patients.

Renal impairment

Film-coated tablets

The pharmacokinetics of orally administered VFEND are not affected by renal impairment. Therefore, no adjustment is necessary for oral dosing for patients with mild to severe renal impairment (see section 5.2).

Powder for solution for infusion

In patients with moderate to severe renal dysfunction (creatinine clearance < 50 mL/min), accumulation of the intravenous vehicle, SBECD, occurs. Oral VFEND should be administered to these patients,

unless an assessment of the risk benefit to the patient justifies the use of intravenous VFEND. Serum creatinine levels should be closely monitored in these patients and, if increases occur, consideration should be given to changing to oral VFEND therapy (see section 5.2).

Film-coated tablets and powder for solution for infusion

VFEND is haemodialysed with a clearance of 121 mL/min. A four-hour haemodialysis session does not remove a sufficient amount of VFEND to warrant dose adjustment.

The intravenous vehicle, SBECD, is haemodialysed with a clearance of 55 mL/min.

Hepatic impairment

No dose adjustment is necessary in patients with acute hepatic injury, manifested by elevated liver function tests (ALT, AST), but continued monitoring of liver function tests for future elevations is recommended.

It is recommended that the standard loading dose regimens of 400 mg every 12 hours (orally) and a maintenance dose of 100 mg every 12 hours (orally) be used in patients with mild to moderate hepatic cirrhosis (Child-Pugh A and B) receiving VFEND.

VFEND has not been studied in patients with severe chronic hepatic cirrhosis (Child-Pugh C).

VFEND has been associated with elevations in liver function tests and clinical signs of liver damage, such as jaundice. Patients with hepatic impairment must be carefully monitored for medicine toxicity (see section 4.8).

Paediatric population

Safety and effectiveness in paediatric subjects below the age of 2 years has not been established. Therefore, VFEND is not recommended for children less than 2 years of age. Limited data are currently available to determine the optimal posology. However, the following regimen has been used in paediatric studies.

Children aged 2 to < 12 years

	Intravenous	Oral
Loading dose regimen	6 mg/kg every 12 hours	6 mg/kg every 12 hours
(first 24 hours)	(for the first 24 hours)	(for the first 24 hours)
Maintenance dose	4 mg/kg every 12 hours	4 mg/kg every 12 hours
(after first 24 hours)		

If a child is able to swallow tablets, the dose should be administered to the nearest mg/kg dose possible using whole 50 mg tablets.

The pharmacokinetics and tolerability of higher doses have not been characterised in paediatric populations.

Adolescents (12 to 16 years of age) should be dosed as adults.

Duration of treatment

Treatment duration depends on the patient's clinical and mycological response. The duration of oral and intravenous VFEND treatment in the clinical studies ranged from 12 weeks to more than 6 months.

Method of administration

Film-coated tablets

For oral use.

VFEND tablets are to be taken at least one hour before, or one hour following, a meal.

Powder for solution for infusion

VFEND requires reconstitution and dilution prior to administration as an intravenous infusion (see section 6.6).

Not for bolus injection.

It is recommended that VFEND is administered at a maximum rate of 3 mg/kg per hour over 1 to 3 hours.

4.3 Contraindications

- Known hypersensitivity to voriconazole or to any of the excipients of VFEND (listed in section 6.1).
- Co-administration of the CYP3A4 substrates, terfenadine, astemizole, cisapride, pimozide, quinidine or ivabradine with VFEND is contraindicated since increased plasma concentrations of these medicines can lead to QTc prolongation and rare occurrences of *Torsades de Pointes* (see section 4.5).
- Co-administration of VFEND with rifampicin, carbamazepine,-phenobarbital and St John's Wort is contraindicated since these medicines are likely to decrease plasma voriconazole concentrations significantly (see section 4.5).
- Co-administration of standard doses of VFEND with efavirenz doses of 400 mg once daily or higher is contraindicated, because efavirenz significantly decreases plasma VFEND concentrations in healthy subjects at these doses. VFEND also significantly increases efavirenz plasma concentrations (see section 4.5, for lower doses see section 4.4).
- Co-administration of VFEND with high dose ritonavir (400 mg and above twice daily) is contraindicated because ritonavir significantly decreased plasma VFEND concentrations in healthy subjects at this dose (see section 4.5, for lower doses see section 4.4).
- Co-administration of ergot alkaloids (ergotamine, dihydroergotamine), which are CYP3A4 substrates, is contraindicated since increased plasma concentrations of these medicines can lead to ergotism (see section 4.5).
- · Co-administration of VFEND and sirolimus is contraindicated, since voriconazole is likely to

increase plasma concentrations of sirolimus significantly (see section 4.5).

- Co-administration of VFEND and rifabutin is contraindicated since VFEND is likely to increase plasma concentrations of rifabutin significantly (see section 4.5).
- Co-administration of VFEND with naloxegol, a CYP3A4 substrate, is contraindicated since increased plasma concentrations of naloxegol can precipitate opioid withdrawal symptoms (see section 4.5).
- Co-administration of VFEND with tolvaptan is contraindicated since strong CYP3A4 inhibitors such as VFEND significantly increase plasma concentrations of tolvaptan (see section 4.5).
- Co-administration of VFEND with lurasidone is contraindicated since significant increases in lurasidone exposure have the potential for serious adverse reactions (see section 4.5).
- Co-administration with venetoclax at initiation and during the venetoclax dose titration phase is contraindicated since VFEND is likely to significantly increase plasma concentrations of venetoclax and increase risk of tumour lysis syndrome (see section 4.5).
- Patients with prolonged QT syndrome.
- Pregnancy and lactation.
- Severe impairment of hepatic function (Child-Pugh Class C).

4.4 Special warnings and precautions for use

Hypersensitivity

Caution should be used in prescribing VFEND to patients with hypersensitivity to other azoles (see section 4.8).

Infusion-related reaction

Infusion-related reactions, predominantly flushing and nausea have been observed during administration of the intravenous formulation of VFEND.

Depending on the severity of the symptoms, consideration should be given to stopping treatment (see section 4.8).

Cardiovascular

VFEND has been associated with QTc interval prolongation. There have been rare cases of *Torsades de pointes* in patients taking VFEND who had risk factors, such as history of cardiotoxic chemotherapy, cardiomyopathy, hypokalaemia and concomitant medicines that may have been contributory. VFEND should be administered with caution to patients with potentially prodysrhythmic conditions, such as:

- Congenital or acquired QTc prolongation
- Cardiomyopathy, in particular when heart failure is present
- Sinus bradycardia
- Existing symptomatic dysrhythmias
- Concomitant medicines known to prolong QTc interval.

Electrolyte disturbances such as hypokalaemia, hypomagnesemia and hypocalcaemia should be monitored and corrected, if necessary, prior to initiation of and during VFEND therapy (see section 4.2).

Hepatic toxicity

In clinical trials, there have been cases of serious hepatic reactions during treatment with VFEND (including clinical hepatitis, cholestasis and fulminant hepatic failure, including fatalities). Instances of hepatic reactions were noted to occur primarily in patients with serious underlying medical conditions (predominantly haematological malignancy). Transient hepatic reactions, including hepatitis and jaundice, have occurred among patients with no other identifiable risk factors. Liver dysfunction has usually been reversible on discontinuation of therapy (see section 4.8).

Monitoring of hepatic function

Patients receiving VFEND must be carefully monitored for hepatic toxicity. Clinical management should include laboratory evaluation of hepatic function (specifically AST and ALT) at the initiation of treatment with VFEND and at least weekly for the first month of treatment. If treatment is continued, monitoring frequency can be reduced to monthly if there are no changes in the liver function tests.

If the liver function tests become markedly elevated, VFEND should be discontinued, unless the medical

judgment of the risk-benefit of the treatment for the patient justifies continued use (see section 4.2).

Visual adverse events

There have been post-marketing reports of prolonged visual adverse events, including optic neuritis and papilloedema. These events occurred primarily in severely ill patients who had underlying conditions and/or concomitant medicines which may have caused or contributed to these events (see section 4.8).

Renal adverse events

Acute renal failure has been observed in severely ill patients undergoing treatment with VFEND. Patients being treated with VFEND are likely to be treated concomitantly with nephrotoxic medicines and have concurrent conditions that may result in decreased renal function (see section 4.8).

Monitoring of renal function

Patients should be monitored for the development of abnormal renal function. This should include laboratory evaluation, particularly serum creatinine.

Monitoring of pancreatic function

Adults and children with risk factors for acute pancreatitis (e.g. recent chemotherapy, haematopoietic stem cell transplantation [HSCT]), should be monitored for development of pancreatitis during VFEND treatment.

Dermatological adverse events

During treatment with VFEND, patients have developed severe cutaneous adverse reactions (SCARs) such as Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN), and drug reaction with eosinophilia and systemic symptoms (DRESS) which can be life-threatening or fatal (see section 4.8). If a patient develops a severe cutaneous adverse reaction VFEND should be discontinued.

In addition, VFEND has been associated with photosensitivity skin reaction. It is recommended that

patients, particularly children, avoid intense or prolonged exposure to direct sunlight during VFEND treatment and use measures such as protective clothing and sunscreen with high sun protection factor (SPF).

Adrenal events

Reversible cases of adrenal insufficiency have been reported in patients receiving azoles, including VFEND. Adrenal insufficiency has been reported in patients receiving azoles with or without concomitant corticosteroids. In patients receiving azoles without corticosteroids, adrenal insufficiency is related to direct inhibition of steroidogenesis by azoles. In patients taking corticosteroids, VFEND associated CYP3A4 inhibition of their metabolism may lead to corticosteroid excess and adrenal suppression (see section 4.5). Cushing's syndrome with and without subsequent adrenal insufficiency has also been reported in patients receiving VFEND concomitantly with corticosteroids.

Patients on long-term treatment with VFEND and corticosteroids (including inhaled corticosteroids e.g., budesonide and intranasal corticosteroids) should be carefully monitored for adrenal cortex dysfunction both during treatment and when VFEND is discontinued (see section 4.5). Patients should be instructed to seek immediate medical care if they develop signs and symptoms of Cushing's syndrome or adrenal insufficiency.

Long-term treatment

Squamous cell carcinoma of the skin (SCC)

In patients with photosensitivity skin reactions and additional risk factors, squamous cell carcinoma of the skin (including cutaneous SCC *in situ*, or Bowen's disease) and melanoma have been reported during long-term therapy (see section 4.8). If phototoxic reactions occur multidisciplinary advice should be sought, VFEND discontinuation and use of alternative antifungal medicines should be considered and the patient should be referred to a dermatologist. If VFEND is continued, however, dermatologic evaluation should be performed on a systematic and regular basis, to allow early detection and management of premalignant lesions.

If a patient develops a skin lesion consistent with premalignant skin lesions, squamous cell carcinoma or melanoma, VFEND discontinuation should be considered.

Non-infectious periostitis

Periostitis has been reported in transplant patients during long-term VFEND therapy. If a patient develops skeletal pain and radiologic findings compatible with periostitis, VFEND should be discontinued (see section 4.8).

Methadone (CYP3A4 substrate)

Increased plasma concentrations of methadone have been associated with toxicity including QT prolongation. Frequent monitoring for adverse events and toxicity related to methadone is recommended during co-administration. Dose reduction of methadone may be needed (see section 4.5).

Short-acting opiates (CYP3A4 substrate)

Reduction in the dose of alfentanil, fentanyl and other short acting opiates similar in structure to alfentanil and metabolised by CYP3A4 (e.g. sufentanil) should be considered when co-administered with VFEND (see section 4.5). As the half-life of alfentanil is prolonged in a 4-fold manner when alfentanil is co-administered with VFEND, frequent monitoring for opiate-associated adverse events (including a longer respiratory monitoring period) may be necessary.

Long-acting opiates (CYP3A4 substrate)

Reduction in the dose of oxycodone and other long-acting opiates metabolised by CYP3A4 (e.g. hydrocodone) should be considered when co-administered with VFEND. Frequent monitoring for opiate-associated adverse events may be necessary (see section 4.5).

Fluconazole (CYP2C9, CYP2C19 and CYP3A4 inhibitor)

Co-administration of oral VFEND and oral fluconazole resulted in a significant increase in C_{max} and AUC_T of voriconazole in healthy subjects. The reduced dose and/or frequency of VFEND and

fluconazole that would eliminate this effect have not been established. Monitoring for VFENDassociated adverse reactions is recommended if VFEND is used sequentially after fluconazole (see section 4.5).

Ciclosporin and tacrolimus (CYP3A4 substrates)

Clinically significant medicine interactions with VFEND may occur in patients who are receiving treatment with ciclosporin or tacrolimus (see section 4.5).

Phenytoin (CYP2C9 substrate and potent CYP450 inducer)

Careful monitoring of phenytoin levels is recommended when phenytoin is co-administered with VFEND. Concomitant use of VFEND and phenytoin should be avoided unless the benefit outweighs the risk (see section 4.5).

Ritonavir (potent CYP450 inducer; CYP3A4 inhibitor and substrate)

Co-administration of VFEND and low dose ritonavir (100 mg twice daily) should be avoided unless an assessment of the benefit/risk justifies the use of VFEND (see section 4.5 and for higher doses see section 4.3).

Everolimus (CYP3A4 substrate, P-gp substrate)

Co-administration of VFEND with everolimus is not recommended because VFEND is expected to significantly increase everolimus concentrations. Currently there are insufficient data to allow dosing recommendations in this situation (see section 4.5).

Efavirenz (CYP450 inducer; CYP3A4 inhibitor and substrate)

When VFEND is co-administered with efavirenz the dose of VFEND should be increased to 400 mg twice daily and that of efavirenz should be decreased to 300 mg once daily (see sections 4.2, 4.3 and 4.5).

Glasdegib (CYP3A4 substrate)

Co-administration of VFEND is expected to increase glasdegib plasma concentrations and increase the risk of QTc prolongation (see section 4.5). If concomitant use cannot be avoided, frequent ECG monitoring is recommended.

Tyrosine kinase inhibitors (CYP3A4 substrate)

Co-administration of VFEND with tyrosine kinase inhibitors metabolised by CYP3A4 is expected to increase tyrosine kinase inhibitor plasma concentrations and the risk of adverse reactions. If concomitant use cannot be avoided, dose reduction of the tyrosine kinase inhibitor and close clinical monitoring is recommended (see section 4.5).

Paediatric population

Safety and effectiveness in paediatric subjects below the age of two years has not been established. VFEND is indicated for paediatric patients aged two years or older. A higher frequency of liver enzyme elevations was observed in the paediatric population (see section 4.8). Hepatic function should be monitored in both children and adults. Oral bioavailability may be limited in paediatric patients aged 2 to 12 years with malabsorption and very low body weight for age. In that case, intravenous VFEND administration is recommended.

Serious dermatological adverse reactions (including SCC)

The frequency of phototoxicity reactions is higher in the paediatric population. As an evolution towards SCC has been reported, stringent measures for the photoprotection are warranted in this population of patients. In children experiencing photoaging injuries such as lentigines or ephelides, sun avoidance and dermatologic follow-up are recommended even after treatment discontinuation.

Excipients

Tablets

Lactose

VFEND tablets contain lactose and should not be given to patients with rare hereditary problems of

galactose intolerance, total lactase deficiency or glucose-galactose malabsorption.

Sodium

VFEND tablets contain less than 1 mmol sodium (23 mg) per tablet. Patients on low sodium diets should be informed that this medicine is essentially 'sodium-free'.

Powder for solution for infusion

Sodium

VFEND IV powder for solution for infusion contains 221 mg of sodium per vial, equivalent to 11 % of the WHO recommended maximum daily intake of 2 g sodium for an adult.

Cyclodextrins

VFEND IV powder for solution for infusion contains cyclodextrins (3 200 mg cyclodextrins in each vial which is equivalent to 160 mg/mL when reconstituted in 20 mL, see section 6.1) which can influence the properties (such as toxicity) of the active substance and other medicines. Safety aspects of cyclodextrins have been considered during the development and safety assessment of VFEND IV.

As cyclodextrins are renally excreted, in patients with moderate to severe renal dysfunction accumulation of cyclodextrin may occur.

4.5 Interaction with other medicines and other forms of interaction

VFEND is metabolised by, and inhibits the activity of, cytochrome P450 isoenzymes, CYP2C19, CYP2C9 and CYP3A4. Inhibitors or inducers of these isoenzymes may increase or decrease VFEND plasma concentrations, respectively and there is potential for VFEND to increase the plasma concentrations of substances metabolised by these CYP450 isoenzymes, in particular for substances metabolised by CYP3A4 since VFEND is a strong CYP3A4 inhibitor though the increase in AUC is substrate dependent (see table below).

Unless otherwise specified, medicine interaction studies have been performed in healthy adult male subjects using multiple dosing to steady state with oral VFEND at 200 mg twice daily. These results are relevant to other populations and routes of administration.

VFEND may prolong the QT interval without a clear relationship to plasma concentration. VFEND should not be used concomitantly with other medicines which prolong the QT interval. When there is also a potential for VFEND to increase the plasma concentrations of substances metabolised by CYP3A4 isoenzymes (e.g. certain antihistamines, quinidine, cisapride, pimozide and ivabradine) co-administration is contraindicated (see below and section 4.3).

Interaction table

Interactions between VFEND and other medicines are listed in the table below (once daily as "QD", twice daily as "BID", three times daily as "TID" and not determined as "ND"). The direction of the arrow for each pharmacokinetic parameter is based on the 90 % confidence interval of the geometric mean ratio being within (\leftrightarrow), below (\downarrow) or above (\uparrow) the 80 – 125 % range. The asterisk (*) indicates a two-way interaction. AUC_t, AUC_t and AUC_{0-∞} represent area under the curve over a dosing interval, from time zero to the time with detectable measurement and from time zero to infinity, respectively.

The interactions in the table are presented in the following order: contraindications, those requiring dosage adjustment and careful clinical and/or biological monitoring and finally those that have no significant pharmacokinetic interaction but that may be of clinical interest in this therapeutic field.

Medicine	Interaction	Recommendations
[Mechanism of interaction]	geometric mean changes (%)	concerning
		co-administration
Astemizole, cisapride,	Although not studied, increased	Contraindicated (see
pimozide, quinidine,	plasma concentrations of these	section 4.3)
terfenadine and ivabradine	medicines can lead to QTc	
[CYP3A4 substrates]	prolongation and rare	
	occurrences of Torsades de	
	Pointes.	
Carbamazepine and long-	Although not studied,	Contraindicated (see
acting barbiturates (including	carbamazepine and long-acting	section 4.3)
but not limited to:	barbiturates are likely to	
phenobarbital, mephobarbital)	significantly decrease plasma	
[potent CYP450 inducers]	VFEND concentrations.	
Efavirenz (a non-nucleoside		
reverse transcriptase inhibitor)		
[CYP450 inducer; CYP3A4		
inhibitor and substrate]		
Efavirenz 400 mg QD,	Efavirenz C _{max} ↑ 38 %	Use of standard doses of
coadministered with VFEND	Efavirenz AUC τ \uparrow 44 %	VFEND with efavirenz doses
200 mg BID	VFEND $C_{max} \downarrow 61 \%$	of 400 mg QD or higher is
	VFEND AUCτ ↓ 77 %	contraindicated (see
		section 4.3).
	Compared to efavirenz 600 mg	
Efavirenz 300 mg QD, co-	QD,	VFEND may be co-
administered with VFEND 400	Efavirenz C _{max} ↔	administered with efavirenz
mg BID*	Efavirenz AUC τ \uparrow 17 %	if the VFEND maintenance
		dose is increased to 400 mg

		BID and the efavirenz dose
	Compared to VFEND 200 mg	is decreased to 300 mg QD.
	BID,	When VFEND treatment is
	VFEND $C_{max} \uparrow 23 \%$	stopped, the initial dose of
	VFEND AUC $\tau \downarrow 7 \%$	efavirenz should be restored
		(see section 4.2).
Ergot alkaloids (including but	Although not studied, VFEND is	Contraindicated (see
not limited to: ergotamine and	likely to increase the plasma	section 4.3)
dihydro-ergotamine)	concentrations of ergot alkaloids	
[CYP3A4 substrates]	and lead to ergotism.	
Lurasidone	Although not studied, VFEND is	Contraindicated (see
[CYP3A4 substrate]	likely to significantly increase the	section 4.3)
	plasma concentrations of	
	lurasidone	
Naloxegol	Although not studied, VFEND is	Contraindicated (see
-		
[CYP3A4 substrate]	likely to significantly increase the	section 4.3)
[CYP3A4 substrate]	likely to significantly increase the plasma concentrations of	section 4.3)
[CYP3A4 substrate]	likely to significantly increase the plasma concentrations of naloxegol	section 4.3)
[CYP3A4 substrate] Rifabutin	likely to significantly increase the plasma concentrations of naloxegol	section 4.3) Contraindicated (see
[CYP3A4 substrate] Rifabutin [potent CYP450 inducer]	likely to significantly increase the plasma concentrations of naloxegol	section 4.3) Contraindicated (see section 4.3)
[CYP3A4 substrate] Rifabutin [potent CYP450 inducer]	likely to significantly increase the plasma concentrations of naloxegol	section 4.3) Contraindicated (see section 4.3)
[CYP3A4 substrate] Rifabutin [potent CYP450 inducer] 300 mg QD	likely to significantly increase the plasma concentrations of naloxegol VFEND C _{max} ↓ 69 %	section 4.3) Contraindicated (see section 4.3)
[CYP3A4 substrate] Rifabutin [potent CYP450 inducer] 300 mg QD	likely to significantly increase the plasma concentrations of naloxegol VFEND $C_{max} \downarrow 69 \%$ VFEND AUC $\tau \downarrow 78 \%$	section 4.3) Contraindicated (see section 4.3)
[CYP3A4 substrate] Rifabutin [potent CYP450 inducer] 300 mg QD	likely to significantly increase the plasma concentrations of naloxegol $VFEND\ C_{max}\downarrow 69\ \%$ $VFEND\ AUC\tau\downarrow 78\ \%$	section 4.3) Contraindicated (see section 4.3)
[CYP3A4 substrate] Rifabutin [potent CYP450 inducer] 300 mg QD 300 mg QD (co-administered	likely to significantly increase the plasma concentrations of naloxegol VFEND $C_{max} \downarrow 69 \%$ VFEND AUC $\tau \downarrow 78 \%$ Rifabutin $C_{max} \uparrow 195 \%$	section 4.3) Contraindicated (see section 4.3)
[CYP3A4 substrate] Rifabutin [potent CYP450 inducer] 300 mg QD 300 mg QD (co-administered with VFEND 400 mg BID)*	likely to significantly increase the plasma concentrations of naloxegol VFEND $C_{max} \downarrow 69 \%$ VFEND AUC $\tau \downarrow 78 \%$ Rifabutin $C_{max} \uparrow 195 \%$ Rifabutin AUC $\tau \uparrow 331 \%$	section 4.3) Contraindicated (see section 4.3)
[CYP3A4 substrate] Rifabutin [potent CYP450 inducer] 300 mg QD 300 mg QD (co-administered with VFEND 400 mg BID)*	likely to significantly increase the plasma concentrations of naloxegol VFEND $C_{max} \downarrow 69 \%$ VFEND AUC $\tau \downarrow 78 \%$ Rifabutin $C_{max} \uparrow 195 \%$ Rifabutin AUC $\tau \uparrow 331 \%$ Compared to VFEND 200 mg	section 4.3) Contraindicated (see section 4.3)
[CYP3A4 substrate] Rifabutin [potent CYP450 inducer] 300 mg QD 300 mg QD (co-administered with VFEND 400 mg BID)*	likely to significantly increase the plasma concentrations of naloxegol VFEND $C_{max} \downarrow 69 \%$ VFEND AUC $\tau \downarrow 78 \%$ Rifabutin $C_{max} \uparrow 195 \%$ Rifabutin AUC $\tau \uparrow 331 \%$ Compared to VFEND 200 mg BID.	section 4.3) Contraindicated (see section 4.3)

	VFEND C _{max} ↑ 104 %	
	VFEND AUCτ ↑ 87 %	
Rifampicin (600 mg QD)	VFEND C _{max} ↓ 93 %	Contraindicated (see
[potent CYP450 inducer]	VFEND AUC $\tau \downarrow$ 96 %	section 4.3)
Ritonavir (protease inhibitor)		
[potent CYP450 inducer;		
CYP3A4 inhibitor and		
substrate]		
High dose (400 mg BID)	Ritonavir C_{max} and $AUC\tau \leftrightarrow$	Co-administration of VFEND
	VFEND $C_{max} \downarrow 66 \%$	and high doses of ritonavir
	VFEND AUCτ ↓ 82 %	(400 mg and above BID) is
		contraindicated (see
		sections 4.3 and 4.4).
Low dose (100 mg BID)*	Ritonavir C _{max} ↓ 25 %	Co-administration of VFEND
	Ritonavir AUCτ ↓13 %	and low dose ritonavir (100
	VFEND C _{max} ↓ 24 %	mg BID) should be avoided,
		unless an assessment of the
	30.04	benefit/risk to the patient
	39.70	justifies the use of VFEND.
St John's Wort	In an independent published	Contraindicated (see
[CYP450 inducer;	study,	section 4.3)
P-gp inducer]	VFEND AUC _{0-∞} \downarrow 59 %	
300 mg TID (co-administered		
with VFEND 400 mg single		
dose)		

Tolvaptan	Although not studied, VFEND is	Contraindicated (see
[CYP3A substrate]	likely to significantly increase the	section 4.3)
	plasma concentrations of	
	tolvaptan.	
Venetoclax	Although not studied, VFEND is	Concomitant administration
[CYP3A substrate]	likely to significantly increase the	of VFEND is
	plasma concentrations of	contraindicated at initiation
	venetoclax.	and during venetoclax dose
		titration phase (see section
		4.3). Dose reduction of
		venetoclax is required as
		instructed in venetoclax
		prescribing information
		during steady daily dosing;
		close monitoring for signs of
		toxicity is recommended.
Fluconazole (200 mg QD)	VFEND C _{max} ↑ 57 %	The reduced dose and/or
[CYP2C9, CYP2C19 and	VFEND AUCτ ↑ 79 %	frequency of VFEND and
CYP3A4 inhibitor]	Fluconazole C _{max} ND	fluconazole that would
	Fluconazole AUC τ ND	eliminate this effect have not
		been established. Monitoring
		for VFEND-associated
		adverse events is
		recommended if VFEND is
		used sequentially after
		fluconazole.

Phenytoin		Concomitant use of VFEND
[CYP2C9 substrate and		and phenytoin should be
potent CYP450 inducer]		avoided unless the benefit
		outweighs the risk. Careful
300 mg QD	VFEND $C_{max} \downarrow 49 \%$	monitoring of phenytoin
	VFEND AUC $\tau \downarrow$ 69 %	plasma levels is
		recommended.
300 mg QD (co-administered	Phenytoin C _{max} ↑ 67 %	Phenytoin may be
with VFEND 400 mg BID)*	Phenytoin AUCτ ↑ 81 %	co-administered with VFEND
	Compared to VFEND 200 mg	if the maintenance dose of
	BID,	VFEND is increased to
	VFEND C _{max} ↑ 34 %	5 mg/kg IV BID or from
	VFEND AUCτ ↑ 39 %	200 mg to 400 mg oral BID,
		(100 mg to 200 mg oral BID
		in patients less than 40 kg)
		(see section 4.2).
Letermovir	VFEND C _{max} ↓ 39 %	If concomitant administration
[CYP2C9 and CYP2C19	VFEND AUC ₀₋₁₂ ↓ 44 %	of VFEND with letermovir
inducer]	VFEND C ₁₂ ↓51 %	cannot be avoided, monitor
		for loss of VFEND
		effectiveness.
Flucloxacillin	Significantly decreased plasma	If concomitant administration
[CYP450 inducer]	VFEND concentrations have been	of VFEND with flucloxacillin
	reported.	cannot be avoided, monitor
		for potential loss of VFEND
		effectiveness (e.g., by
		therapeutic medicine
		monitoring); increasing the
		dose of VFEND may be

		needed.
Glasdegib	Although not studied, VFEND is	If concomitant use cannot be
[CYP3A4 substrate]	likely to increase the plasma	avoided, frequent ECG
	concentrations of glasdegib and	monitoring is recommended
	increase risk of QTc prolongation.	(see section 4.4).
Tyrosine kinase inhibitors	Although not studied, VFEND	If concomitant use cannot be
(including but not limited to:	may increase plasma	avoided, dose reduction of
axitinib, bosutinib,	concentrations of tyrosine kinase	the tyrosine kinase inhibitor
cabozantinib, ceritinib,	inhibitors metabolised by	and close clinical monitoring
cobimetinib, dabrafenib,	CYP3A4.	is recommended (see
dasatinib, nilotinib, sunitinib,		section 4.4).
ibrutinib, ribociclib)		
[CYP3A4 substrates]		
Anticoagulants		
Warfarin (30 mg single dose,	Maximum increase in prothrombin	Close monitoring of
co-administered with 300 mg	time was approximately 2-fold	prothrombin time or other
BID VFEND)		suitable anticoagulation tests
[CYP2C9 substrate]		is recommended, and the
		dose of anticoagulants
Other oral coumarins	Although not studied, VFEND	should be adjusted
(including but not limited	may increase the plasma	accordingly.
to: phen-procoumon,	concentrations of coumarins that	
acenocoumarol)	may cause an increase in	
[CYP2C9 and CYP3A4	prothrombin time.	
substrates]		

Ivacaftor	Although not studied, VFEND is	Dose reduction of ivacaftor
[CYP3A4 substrate]	likely to increase the plasma	is recommended.
	concentrations of ivacaftor with	
	risk of increased adverse	
	reactions.	
Benzodiazepines		Dose reduction of
[CYP3A4 substrates]		benzodiazepines should be
		considered.
Midazolam (0,05 mg/kg IV	In an independent published	
single dose)	study,	
	Midazolam AUC $_{0-\infty}$ \uparrow 3,7-fold	
Midazolam (7,5 mg oral single	In an independent published	
dose)	study,	
	Midazolam C _{max} ↑ 3,8-fold	
	Midazolam AUC _{0-∞} \uparrow 10,3-fold	
Other benzodiazepines	Although not studied, VFEND is	
(including but not limited to:	likely to increase the plasma	
triazolam, alprazolam)	concentrations of other	
	benzodiazepines that are	
	metabolised by CYP3A4 and lead	
	to a prolonged sedative effect.	
Immuno-suppressants		
[CYP3A4 substrates]		
Sirolimus	In an independent published	Co-administration of VFEND
(2 mg single dose)	study, Sirolimus C _{max} \uparrow 6,6-fold	and sirolimus is
		contraindicated (see
		1

	Sirolimus AUC₀ _∞ ↑ 11-fold	section 4.3).
Everolimus	Although not studied, VFEND is	Co-administration of VFEND
[also P-gp substrate]	likely to significantly increase the	and everolimus is not
	plasma concentrations of	recommended because
	everolimus.	VFEND is expected to
		significantly increase
		everolimus concentrations
		(see section 4.4).
Ciclosporin (in stable renal	Ciclosporin C _{max} ↑ 13 %	When initiating VFEND in
transplant recipients receiving	Ciclosporin AUC τ \uparrow 70 %	patients already on
chronic ciclosporin therapy)		ciclosporin it is
		recommended that the
		ciclosporin dose be halved
		and ciclosporin level
		carefully monitored.
		Increased ciclosporin levels
		have been associated with
		nephrotoxicity. When
		VFEND is discontinued,
		ciclosporin levels must be
		carefully monitored and the
		dose increased as
		necessary (see section 4.4).
Tacrolimus (0,1 mg/kg single	Tacrolimus C _{max} ↑ 117 %	When initiating VFEND in
dose)	Tacrolimus AUCt ↑ 221 %	patients already on
		tacrolimus, it is

		recommended that the
		tacrolimus dose be reduced
		to a third of the original dose
		and tacrolimus level carefully
		monitored. Increased
		tacrolimus levels have been
		associated with
		nephrotoxicity. When
		VFEND is discontinued,
		tacrolimus levels must be
		carefully monitored and the
		dose increased as
		necessary (see sections 4.2
		and 4.4).
Long acting opiates		Dose reduction in
[CYP3A4 substrates]		oxycodone and other long-
		acting opiates metabolised
Oxycodone (10 mg single	In an independent published	by CYP3A4
dose)	study,	(e.g., hydrocodone) should
	Oxycodone $C_{max} \uparrow 1,7$ -fold	be considered. Frequent
	Oxycodone AUC _{0-∞} \uparrow 3,6-fold	monitoring for opiate-
		associated adverse events
		may be necessary.
Methadone (32 – 100 mg QD)	R-methadone (active) $C_{max} \uparrow 31$	Frequent monitoring for
[CYP3A4 substrate]	%	adverse events and toxicity
	R-methadone (active) AUC τ \uparrow 47	related to methadone,
	%	including QT prolongation, is
	S-methadone $C_{max} \uparrow 65 \%$	recommended. Dose

	S-methadone AUC τ \uparrow 103 %	reduction of methadone may
		be needed.
Non-Steroidal Anti-		
Inflammatory Drugs (NSAIDs)		
[CYP2C9 substrates]		
lbuprofen (400 mg single	S-Ibuprofen C _{max} \uparrow 20 %	Frequent monitoring for
dose)	S-Ibuprofen AUC₀₋∞ ↑ 100 %	adverse events and toxicity
		related to NSAIDs is
Diclofenac (50 mg single	Diclofenac C _{max} ↑ 114 %	recommended. Dose
dose)	Diclofenac AUC₀₋∞ ↑ 78 %	reduction of NSAIDs may be
		needed.
Omeprazole (40 mg QD)*	Omeprazole C _{max} ↑ 116 %	No dose adjustment of
[CYP2C19 inhibitor;	Omeprazole AUCτ ↑ 280 %	VFEND is recommended.
CYP2C19 and CYP3A4	VFEND C _{max} ↑ 15 %	
substrate]	VFEND AUCτ ↑ 41 %	When initiating VFEND in
		patients already receiving
	Other proton pump inhibitors that	omeprazole doses of 40 mg
	are CYP2C19 substrates may	or above, it is recommended
	also be inhibited by VFEND and	that the omeprazole dose be
	may result in increased plasma	halved.
	concentrations of these	
	medicines.	
Oral contraceptives*	Ethinylestradiol C _{max} ↑ 36 %	Monitoring for adverse
[CYP3A4 substrate;	Ethinylestradiol AUC τ \uparrow 61 %	events related to oral
CYP2C19 inhibitor]	Norethisterone C _{max} ↑ 15 %	contraceptives, in addition to
Norethisterone/	Norethisterone AUC τ \uparrow 53 %	those for VFEND, is
ethinylestradiol	VFEND C _{max} ↑ 14 %	recommended.
(1 mg/0,035 mg QD)		

	VFEND AUCτ ↑ 46 %	
Short acting opiates		Dose reduction of alfentanil,
[CYP3A4 substrates]		fentanyl and other short
		acting opiates similar in
Alfentanil (20 µg/kg single	In an independent published	structure to alfentanil and
dose, with concomitant	study,	metabolised by CYP3A4
naloxone)	Alfentanil AUC _{0-∞} \uparrow 6-fold	(e.g., sufentanil) should be
		considered. Extended and
Fentanyl (5 μ g/kg single dose)	In an independent published	frequent monitoring for
	study,	respiratory depression and
	Fentanyl AUC _{0-∞} \uparrow 1,34-fold	other opiate-associated
		adverse events is
		recommended.
Statins (e.g., lovastatin)	Although not studied, VFEND is	If concomitant administration
[CYP3A4 substrates]	likely to increase the plasma	of VFEND with statins
	concentrations of statins that are	metabolised by CYP3A4
	metabolised by CYP3A4 and	cannot be avoided, dose
	could lead to rhabdomyolysis.	reduction of the statin should
		be considered.
Sulphonylureas (including but	Although not studied, VFEND is	Careful monitoring of blood
not limited to: tolbutamide,	likely to increase the plasma	glucose is recommended.
glipizide, glyburide)	concentrations of sulphonylureas	Dose reduction of
[CYP2C9 substrates]	and cause hypoglycaemia.	sulfonylureas should be
		considered.
Vinca alkaloids (including but	Although not studied, VFEND is	Dose reduction of vinca
not limited to: vincristine and	likely to increase the plasma	alkaloids should be
vinblastine)	concentrations of vinca alkaloids	considered.
[CYP3A4 substrates]	and lead to neurotoxicity.	
Other HIV protease inhibitors	Not studied clinically. In vitro	Careful monitoring for any

(including but not limited to:	studies show that VFEND may	occurrence of medicine
saquinavir, amprenavir and	inhibit the metabolism of HIV	toxicity and/or lack of
nelfinavir)*	protease inhibitors and the	efficacy, and dose
[CYP3A4 substrates and	metabolism of VFEND may also	adjustment may be needed.
inhibitors]	be inhibited by HIV protease	
	inhibitors.	
Other Non-Nucleoside	Not studied clinically. In vitro	Careful monitoring for any
Reverse Transcriptase	studies show that the metabolism	occurrence of medicine
Inhibitors (NNRTIs) (including	of VFEND may be inhibited by	toxicity and/or lack of
but not limited to:	NNRTIs and VFEND may inhibit	efficacy, and dose
delavirdine, nevirapine)*	the metabolism of NNRTIs.	adjustment may be needed.
[CYP3A4 substrates,	The findings of the effect of	
inhibitors or CYP450	efavirenz on VFEND suggest that	
inducers]	the metabolism of VFEND may be	
	induced by a NNRTI.	
Tretinoin	Although not studied, VFEND	Dose adjustment of tretinoin
[CYP3A4 substrate]	may increase tretinoin	is recommended during
	concentrations and increase risk	treatment with VFEND and
	of adverse reactions	after its discontinuation.
	(pseudotumour cerebri,	
	hypercalcaemia).	
Cimetidine (400 mg BID)	VFEND C _{max} ↑ 18 %	No dose adjustment
[non-specific CYP450 inhibitor	VFEND AUCτ ↑ 23 %	
and increases gastric pH]		
Digoxin (0,25 mg QD)	Digoxin C _{max} ↔	No dose adjustment
[P-gp substrate]	Digoxin AUCτ ↔	

Indinavir (800 mg TID)	Indinavir C _{max} ↔	No dose adjustment
[CYP3A4 inhibitor and	Indinavir AUCτ ↔	
substrate]	$VFEND\;C_{max} \leftrightarrow$	
	$VFEND\;AUC\tau\leftrightarrow$	
Macrolide antibiotics		No dose adjustment
Erythromycin (1 g BID)	$VFEND\ C_{max}\ and\ AUC\tau \leftrightarrow$	
[CYP3A4 inhibitor]		
Azithromycin	VFEND C_{max} and $AUC\tau \leftrightarrow$	
(500 mg QD)		
	The effect of VFEND on either	
	erythromycin or azithromycin is	
	unknown.	
Mycophenolic acid (1 g single	Mycophenolic acid $C_{max} \leftrightarrow$	No dose adjustment
dose)	$Mycophenolic \text{ acid } AUC_t \leftrightarrow$	
[UDP-glucuronyl transferase		
substrate]		
Corticosteroids		No dose adjustment
Prednisolone (60 mg single	Prednisolone $C_{max} \uparrow 11 \%$	Patients on long-term
dose)	Prednisolone AUC _{0-∞} \uparrow 34 %	treatment with VFEND and
[CYP3A4 substrate]		corticosteroids (including
		inhaled corticosteroids e.g.,
		budesonide and intranasal
		corticosteroids) should be
		carefully monitored for
		adrenal cortex dysfunction
		both during treatment and
		when VFEND is

		discontinued (see section
		4.4).
Ranitidine (150 mg BID)	VFEND C_{max} and $AUC\tau \leftrightarrow$	No dose adjustment
[increases gastric pH]		

4.6 Fertility, pregnancy and lactation

Women of child-bearing potential

Women of childbearing potential must always use effective contraception during treatment.

Pregnancy (see section 4.3)

No adequate information on the use of VFEND in pregnant women is available.

Studies in animals have shown reproductive toxicity and teratogenicity. The potential risk to humans is unknown.

VFEND must not be used during pregnancy.

Breastfeeding

The excretion of VFEND into breastmilk has not been investigated. Breastfeeding must be stopped on initiation of treatment with VFEND (see section 4.3).

Fertility

In an animal study, no impairment of fertility was demonstrated in male and female rats.

4.7 Effects on ability to drive and use machines

VFEND may cause transient and reversible changes to vision, including blurring, altered/enhanced visual perception, and/or photophobia. Patients must avoid potentially hazardous tasks, such as driving or operating machinery whilst experiencing these symptoms.

4.8 Undesirable effects

Summary of the safety profile

The safety profile of VFEND is based on an integrated safety database of patients who participated in clinical trials. This represents a heterogeneous population, containing patients with haematological malignancy, HIV infected patients with oesophageal candidiasis and refractory fungal infections, non-neutropenic patients with candidaemia or aspergillosis and healthy volunteers. Duration of treatment ranged from 12 weeks to more than 6 months.

In addition, the safety of VFEND was investigated in 279 patients (including 270 adults) who were treated with VFEND in prophylaxis studies. The adverse event profile in these prophylaxis studies was similar to the established safety profile from 2000 subjects in VFEND clinical trials.

Tabulated summary of adverse reactions

In the table below, since the majority of the studies were of an open nature, all causality adverse events, by system organ class and frequency if possibly causally related are listed as very common (\geq 1/10), common (\geq 1/100 to < 1/10), uncommon (\geq 1/1 000 to < 1/100) and rare (\geq 1/10 000 to < 1/1 000).

The most commonly reported adverse events were visual disturbances, fever, rash, vomiting, nausea, diarrhoea, headache, peripheral oedema and abdominal pain. The severity of the adverse events was generally mild to moderate. No clinically significant differences were seen when the safety data were analysed by age, race, or gender.

Side effects reported in subjects receiving VFEND

MedDRA system organ	Frequency	Adverse reaction
class		
Infections and infestations	Common	Sinusitis
	Uncommon	Pseudomembranous colitis
Blood and lymphatic	Common	Agranulocytosisª, pancytopenia,

system disorders		thrombocytopenia ^b , leukopenia, anaemia
		(including macrocytic, microcytic,
		normocytic, megaloblastic, aplastic)
	Uncommon	Bone marrow failure, lymphadenopathy,
		eosinophilia, disseminated intravascular
		coagulation
Immune system disorders	Uncommon	Hypersensitivity, anaphylactoid reaction
Endocrine disorders	Uncommon	Adrenal cortex insufficiency,
		hypothyroidism
	Rare	Hyperthyroidism
Metabolism and nutrition	Very common	Peripheral oedema
disorders	Common	Hypoglycaemia, hypokalaemia
Psychiatric disorders	Common	Depression, hallucinations, anxiety,
		insomnia, agitation, confusional state
Nervous system disorders	Very common	Headache
	Common	Syncope, tremor, hypertonia ^e ,
		paraesthesia, somnolence, dizziness
	Uncommon	Brain oedema, encephalopathy ^c ,
		extrapyramidal disorder ^d , peripheral
		neuropathy, ataxia, hypoaesthesia,
		dysgeusia, nystagmus
	Rare	Hepatic encephalopathy, Guillain-Barre
		syndrome
Eye disorders	Very common	Visual impairment ^h (including
		altered/enhanced visual perception,
		blurred vision, colour vision change,
		photophobia)
	Common	Retinal haemorrhage
	Uncommon	Optic nerve disorder ^f , papilloedema ^g ,

		oculogyric crisis, diplopia, scleritis,
		blepharitis
	Rare	Optic atrophy, corneal opacity
Ear and labyrinth	Uncommon	Hypoacusis, vertigo, tinnitus
disorders		
Cardiac disorders	Common	Supraventricular dysrhythmia, atrial
		dysrhythmia, tachycardia, bradycardia
	Uncommon	Ventricular fibrillation, ventricular
		extrasystoles, ventricular dysrhythmia,
		ventricular tachycardia, prolonged QT
		interval, supraventricular tachycardia
	Rare	Torsades de Pointes, atrioventricular
		(AV) complete block, bundle branch
		block, nodal rhythm
Vascular disorders	Common	Hypotension, phlebitis, thrombophlebitis
	Uncommon	Lymphangitis
Respiratory, thoracic and	Common	Acute respiratory distress syndrome,
mediastinal disorders		pulmonary oedema
Gastrointestinal disorders	Very common	Diarrhoea, vomiting, abdominal pain,
		nausea
	Common	Cheilitis, dyspepsia, constipation,
		gingivitis, gastroenteritis
	Uncommon	Peritonitis, pancreatitis, swollen tongue,
		duodenitis, glossitis
Hepato-biliary disorders	Very common	Abnormal liver function tests (including
		AST, ALT, alkaline phosphatase, GGT,
		LDH, bilirubin)
	Common	Jaundice, cholestatic jaundice, hepatitis ⁱ
	Uncommon	Hepatic failure, hepatomegaly,

		cholecystitis, cholelithiasis
Skin and subcutaneous	Very common	Rash
tissue disorders	Common	Exfoliative dermatitis, alopecia, purpura,
		maculo-papular rash, pruritus,
		photosensitivity skin reaction
	Uncommon	Stevens-Johnson syndrome, urticaria,
		eczema, psoriasis, drug eruption
	Rare	Toxic epidermal necrolysis, angioedema,
		pseudoporphyria, erythema multiforme,
		discoid lupus erythematosus
Musculoskeletal	Common	Back pain
and connective tissue	Uncommon	Arthritis
disorders		
Renal and urinary	Common	Acute renal failure, haematuria
disorders	Uncommon	Renal tubular necrosis, proteinuria,
		nephritis
General disorders and	Very common	Pyrexia
administration site	Common	Chest pain, facial oedema ^j , asthenia,
conditions		chills, injection site reaction, influenza
		like illness
Investigations	Common	Increased creatinine
	Uncommon	Increased blood urea,
		hypercholesterolaemia
^a Includes febrile neutroper	nia and neutropenia.	

^b Includes immune thrombocytopenic purpura.

^c Includes hypoxic-ischaemic encephalopathy and metabolic encephalopathy.

^d Includes akathisia and parkinsonism.

^e Includes nuchal rigidity and tetany.

^f Prolonged optic neuritis has been reported post-marketing. See section 4.4.

^g See section 4.4.

^h See "Visual impairments" paragraph in section 4.8.

ⁱ Includes drug-induced liver injury, hepatitis toxic, hepatocellular injury and hepatotoxicity.

^j Includes periorbital oedema, lip oedema, and mouth oedema.

Post-marketing experience

MEDRA system organ class	Adverse reaction
Metabolism and nutrition disorders	Hyponatraemia
Neoplasms benign, malignant and	Squamous cell carcinoma (including cutaneous
unspecified (including cysts and	SCC <i>in situ</i> , or Bowen's disease)
polyps)	
Skin and subcutaneous tissue	Cutaneous lupus erythematosus, drug reaction
disorders	with eosinophilia and systemic symptoms
Musculoskeletal and connective	Periostitis
tissue disorders	

Visual Impairments

In clinical trials, visual impairments (including blurred vision, photophobia, chloropsia, chromatopsia, colour blindness, cyanopsia, eye disorder, halo vision, night blindness, oscillopsia, photopsia, scintillating scotoma, visual acuity reduced, visual brightness, visual field defect, vitreous floaters, and xanthopsia) with VFEND were very common. These visual impairments were transient and fully reversible, with the majority spontaneously resolving within 60 minutes. There was evidence of attenuation with repeated doses of VFEND. The visual disturbances were generally mild, rarely resulted in discontinuation and were not associated with long-term sequelae. Visual impairments may be associated with higher plasma concentrations and/or doses.

The mechanism of action is unknown, although the site of action is most likely to be within the retina.

In a study in healthy volunteers investigating the impact of VFEND on retinal function, VFEND caused a decrease in the electroretinogram (ERG) waveform amplitude. The ERG measures electrical currents in the retina. The ERG changes did not progress over 29 days of treatment and were fully reversible on withdrawal of VFEND.

The long-term effect of VFEND (median 169 days; range 5 - 353 days) on visual function was evaluated in subjects with paracoccidioidomycosis. VFEND had no clinically relevant effect on visual function as assessed by testing of visual acuity, visual fields, colour vision and contrast sensitivity. There were no signs of retinal toxicity. 17/35 VFEND subjects experienced visual adverse events. These events did not lead to discontinuation, were generally mild, occurred during the first week of therapy and resolved during continued VFEND therapy.

There have been post-marketing reports of prolonged visual adverse events (see section 4.4).

Dermatological reactions

Dermatological reactions were very common in patients treated with VFEND in clinical trials, but these patients had serious underlying diseases and were receiving multiple concomitant medicines. The majority of rashes were of mild to moderate severity. Patients have rarely developed severe cutaneous adverse reactions (SCARs), including Stevens-Johnson syndrome (SJS) (uncommon), toxic epidermal necrolysis (TEN) (rare), drug reaction with eosinophilia and systemic symptoms (DRESS) which was reported post-marketing (frequency not known) and erythema multiforme (rare) during treatment with VFEND (see section 4.4).

If patients develop a rash they should be monitored closely and VFEND discontinued if lesions progress.

Photosensitivity reactions have been reported, especially during long-term therapy (see section 4.4).

Dermatological adverse reactions potentially related to phototoxicity (pseudoporphyria, cheilitis, and

cutaneous lupus erythematosus) are also reported with VFEND. Sun avoidance and photoprotection are recommended for all patients. There is a potential increased risk of skin reactions/toxicity with concomitant use of photosensitising agents (e.g., methotrexate). If phototoxicity occurs, VFEND discontinuation and dermatological evaluation should be considered (see section 4.4).

Liver function tests

The overall incidence of transaminase increases > 3 x ULN (not necessarily comprising an adverse event) in the VFEND clinical programme was 18,0 % (319/1768) in adults and 25,8 % (73/283) in paediatric subjects who received VFEND for pooled therapeutic and prophylaxis use. Liver function test abnormalities may be associated with higher plasma concentrations and/or doses. The majority of abnormal liver function tests are either resolved during treatment without dose adjustment or following dose adjustment, including discontinuation of therapy.

VFEND has been associated with cases of serious hepatic toxicity in patients with other serious underlying conditions. This includes cases of jaundice, hepatitis and hepatic failure leading to death.

Infusion-related reactions

During infusion of the intravenous formulation of VFEND in healthy subjects, anaphylactoid-type reactions, including flushing, fever, sweating, tachycardia, chest tightness, dyspnoea, faintness, nausea, pruritus, and rash have occurred. Symptoms appeared immediately upon initiating the infusion (see section 4.4).

Paediatric population

The safety of VFEND was investigated in 288 paediatric patients aged 2 to < 12 years (169) and 12 to < 18 years (119) who received VFEND for prophylaxis (183) and therapeutic use (105). The adverse event profile in these 288 paediatric patients was similar to adults. A higher frequency of liver enzyme elevations reported as adverse events (14,2 % transaminases increased in paediatrics compared to 5,3 % in adults) was observed in paediatric patients aged 2 to < 12 years who were observed in compassionate

use programs (158 paediatric patients). Post-marketing data show a higher occurrence of skin reactions in the paediatric population compared to adults.

There have been post-marketing reports of pancreatitis in paediatric patients.

Reporting of suspected adverse reactions

Reporting suspected adverse reactions after authorization of the medicine is important. It allows continued monitoring of the benefit/risk balance of the medicine. Health care providers are asked to report any suspected adverse reactions to SAHPRA via the "6.04 Adverse Drug Reactions Reporting Form", found online under SAHPRA's publications:

https://www.sahpra.org.za/Publications/Index/8

4.9 Overdose

In clinical trials there were 3 cases of accidental overdose. All occurred in paediatric patients, who received up to five times the recommended intravenous dose of VFEND. A single adverse event of photophobia of 10 minutes duration was reported.

There is no known antidote to VFEND.

Film-coated tablets

VFEND is haemodialysed with a clearance of 121 mL/min. In an overdose, haemodialysis may assist in the removal of voriconazole from the body.

Powder for solution for infusion

VFEND is haemodialysed with a clearance of 121 mL/min. The intravenous vehicle, SBECD, is haemodialysed with a clearance of 55 mL/min. In an overdose, haemodialysis may assist in the removal of VFEND and SBECD from the body.

5. PHARMACOLOGICAL PROPERTIES

5.1 Pharmacodynamic properties

Category and class: A 20.1.7 Antimicrobial (chemotherapeutic) agents: Antifungal antibiotics

Mechanism of action

Voriconazole is a broad spectrum triazole antifungal medicine. Its mode of action is inhibition of fungal cytochrome P450-mediated 14α -sterol demethylation, an essential step in ergosterol biosynthesis.

Microbiology

In vitro, voriconazole displays broad-spectrum antifungal activity with antifungal potency against *Candida* species (including fluconazole resistant *C. krusei* and resistant strains of *C. glabrata* and *C. albicans*) and fungicidal activity against all *Aspergillus* species tested. In addition, voriconazole shows *in vitro* fungicidal activity against emerging fungal pathogens, including those such as *Scedosporium* or *Fusarium*.

Specimens for fungal culture and other relevant laboratory studies (serology, histopathology) should be obtained prior to therapy to isolate and identify causative organisms. Therapy may be instituted before the results of the cultures and other laboratory studies are known; however, once these results become available, anti-infective therapy should be adjusted accordingly.

Clinical isolates with decreased susceptibility to voriconazole have been identified. Correlation of *in vitro* activity with clinical outcome is difficult owing to the complexity of the patients studied in clinical trials.

5.2 Pharmacokinetic properties

General pharmacokinetic characteristics

The pharmacokinetics of voriconazole have been characterized in healthy subjects, special populations and patients. During oral administration of 200 mg or 300 mg twice daily for 14 days in patients at risk of aspergillosis (mainly patients with malignant neoplasms of lymphatic or haematopoietic tissue), the observed pharmacokinetic characteristics of rapid and consistent absorption, accumulation and nonlinear pharmacokinetics were in agreement with those observed in healthy subjects.

The pharmacokinetics of voriconazole are non-linear due to saturation of its metabolism. Greater than proportional increase in exposure is observed with increasing dose. It is estimated that, on average, increasing the oral dose from 200 mg twice daily to 300 mg twice daily leads to a 2,5-fold increase in exposure (AUC_{τ}). When the recommended intravenous or oral loading dose regimens are administered, plasma concentrations close to steady state are achieved within the first 24 hours of dosing. Without the loading dose regimens, accumulation occurs during twice daily multiple dosing with steady-state plasma voriconazole concentrations being achieved by day 6 in the majority of subjects.

Absorption

Voriconazole is rapidly and almost completely absorbed following oral administration, with maximum plasma concentrations (C_{max}) achieved 1 – 2 hours after dosing. The absolute bioavailability of voriconazole after oral administration is estimated to be 96 %. When multiple doses of voriconazole are administered with high fat meals C_{max} and AUC_t are reduced by 34 % and 24 %, respectively.

The absorption of voriconazole is not affected by changes in gastric pH.

Distribution

The volume of distribution at steady state for voriconazole is estimated to be 4,6 L/kg, suggesting extensive distribution into tissues. Plasma protein binding is estimated to be 58 %.

Detectable voriconazole concentrations are present in the cerebrospinal fluid of patients treated with voriconazole.

Biotransformation

In vitro studies showed that voriconazole is metabolized by the hepatic cytochrome P450 isoenzymes, CYP2C19, CYP2C9 and CYP3A4.

The inter-individual variability of voriconazole pharmacokinetics is high.

In vivo studies indicated that CYP2C19 is significantly involved in the metabolism of voriconazole. This enzyme exhibits genetic polymorphism. For example, 15 - 20 % of Asian populations may be expected to be poor metabolisers. For Caucasians and Blacks the prevalence of poor metabolisers is 3 - 5 %. Studies conducted in Caucasian and Japanese healthy subjects have shown that poor metabolisers have, on average, 4-fold higher voriconazole exposure (AUC_τ) than their homozygous extensive metabolizer counterparts. Subjects who are heterozygous extensive metabolisers have on average 2-fold higher voriconazole exposure than their homozygous extensive metaboliser counterparts.

The major metabolite of voriconazole is the N-oxide, which accounts for 72 % of the circulating radiolabelled metabolites in plasma. This metabolite has minimal antifungal activity and does not contribute to the overall efficacy of voriconazole.

Elimination

Voriconazole is eliminated via hepatic metabolism with less than 2 % of the dose excreted unchanged in the urine.

After administration of a radiolabelled dose of voriconazole, approximately 80 % of the radioactivity is recovered in the urine after multiple intravenous dosing and 83 % in the urine after multiple oral dosing. The majority (> 94 %) of the total radioactivity is excreted in the first 96 hours after both oral and intravenous dosing.

The terminal half-life of voriconazole depends on dose and is approximately 6 hours following 200 mg (orally). Because of non-linear pharmacokinetics, the terminal half-life is not useful in the prediction of the accumulation or elimination of voriconazole.

Pharmacokinetic-pharmacodynamic relationships

A positive association between mean, maximum or minimum plasma voriconazole concentration and

efficacy in therapeutic studies was not found.

Pharmacokinetic-pharmacodynamic analyses of clinical trial data identified positive associations between plasma voriconazole concentrations and both liver function test abnormalities and visual disturbances.

Special populations

Gender

In an oral multiple dose study, C_{max} and AUC_{τ} for healthy young females were 83 % and 113 % higher, respectively, than in healthy young males (18 – 45 years). In the same study, no significant differences in C_{max} and AUC_{τ} were observed between healthy elderly males and healthy elderly females (≥ 65 years).

In the clinical programme, no dosage adjustment was made on the basis of gender. The safety profile and plasma concentrations observed in male and female patients were similar. Therefore, no dosage adjustment based on gender is necessary.

Elderly

In an oral multiple dose study C_{max} and AUC_t in healthy elderly males (≥ 65 years) were 61 % and 86 % higher, respectively, than in healthy young males (18 – 45 years). No significant differences in C_{max} and AUC_t were observed between healthy elderly females (≥ 65 years) and healthy young females (18 – 45 years).

In the therapeutic studies no dosage adjustment was made on the basis of age. A relationship between plasma concentrations and age was observed. However, the safety profile of voriconazole in young and elderly patients was similar and, therefore, no dosage adjustment is necessary for the elderly.

Renal impairment Film-coated tablets

In an oral single dose (200 mg) study in subjects with normal renal function and mild (creatinine clearance 41 - 60 mL/min) to severe (creatinine clearance < 20 mL/min) renal impairment, the pharmacokinetics of voriconazole were not significantly affected by renal impairment. The plasma protein binding of voriconazole was similar in subjects with different degrees of renal impairment (see sections 4.2 and 4.4).

Powder for solution for infusion

In patients with moderate to severe renal dysfunction (serum creatinine levels > 2,5 mg/dL), accumulation of the intravenous vehicle, SBECD, occurs. See dosing and monitoring recommendations under section 4.2 and section 4.4.

Hepatic impairment

After an oral single dose (200 mg), AUC was 233 % higher in subjects with mild to moderate hepatic cirrhosis (Child-Pugh A and B) compared with subjects with normal hepatic function. Protein binding of voriconazole was not affected by impaired hepatic function.

In an oral multiple dose study, AUC_{τ} was similar in subjects with moderate hepatic cirrhosis (Child-Pugh B) given a maintenance dose of 100 mg twice daily and subjects with normal hepatic function given 200 mg twice daily. No pharmacokinetic data are available for patients with severe hepatic cirrhosis (Child-Pugh C). See dosing and monitoring recommendations under section 4.2 and section 4.4.

Paediatric population

Powder for solution for infusion

A population pharmacokinetic analysis was conducted on data from 35 immuno-compromised subjects aged 2 to < 12 years old who were included in the intravenous single or multiple dose pharmacokinetic studies. Twenty-four of these subjects received multiple doses of voriconazole. Average steady state plasma concentrations in children receiving a maintenance dose of 4 mg/kg every 12 hours were similar to those in adults receiving 3 mg/kg every 12 hours, with medians of 1 186 ng/mL in children and 1 155 ng/mL in adults. Therefore, a maintenance dose of 4 mg/kg every 12 hours is recommended for children

aged between 2 to < 12 years of age.

6. PHARMACEUTICAL PARTICULARS

6.1 List of excipients

Film-coated tablets

Tablet core

Lactose monohydrate

Pregelatinised starch

Croscarmellose sodium

Povidone

Magnesium stearate

Film-coating

White Opadry® which contains

Hypromellose

Titanium dioxide

Lactose monohydrate

Glycerol triacetate

Powder for solution for infusion Sulphobutylether beta cyclodextrin sodium (SBECD) Water for injections

6.2 Incompatibilities

Film-coated tablets

Not applicable.

Powder for solution for infusion Blood products and concentrated electrolytes

VFEND must not be infused concomitantly with any blood product or any short-term infusion of concentrated electrolytes, even if the two infusions are running in separate intravenous lines (or cannulas). Electrolyte disturbances such as hypokalaemia, hypomagnesaemia and hypocalcaemia should be corrected prior to initiation of VFEND therapy.

Intravenous solutions containing (non-concentrated) electrolytes

VFEND can be infused at the same time as other intravenous solutions containing (non-concentrated) electrolytes but must be infused through a separate line.

Total parenteral nutrition (TPN)

VFEND can be infused at the same time as total parenteral nutrition but must be infused in a separate line. If infused through a multiple-lumen catheter, TPN needs to be administered using a different port from the one used for VFEND.

VFEND must not be infused into the same line or cannula concomitantly with other medicine infusions, including parenteral nutrition. 4,2 % Sodium Bicarbonate intravenous infusion is not compatible with VFEND and must not be used as a diluent. Compatibility with other concentrations is unknown.

This medicine must not be mixed with other medicines except those listed in section 6.6.

6.3 Shelf life*Film-coated tablets*36 months

Powder for solution for infusion 36 months

VFEND IV does not contain an antimicrobial preservative. If the reconstituted solution is not

used immediately, the reconstituted solution will remain suitable for its intended use for up to

24 hours, stored at 2 - 8 °C, if reconstitution has taken place in controlled and validated aseptic conditions.

6.4 Special precautions for storage

Film-coated tablets

Store at or below 25 °C.

Powder for solution for infusion

Store at or below 25 °C.

Reconstituted concentrate

Store at 2 °C - 8 °C for up to 24 hours (in a refrigerator). For storage instructions after reconstitution, see section 6.3.

6.5 Nature and contents of container

Film-coated tablets

Transparent PVC/Aluminium blisters with foil backing composed of hard tempered aluminium with vinylacrylate-based heat coating. The blisters are contained in cartons of 2, 10, 14, 20, 28, 30, 50, 56 or 100 tablets.

Not all pack sizes may be marketed.

Powder for solution for infusion

A sterile lyophilised powder in individually boxed, single use 30 mL clear Type I glass vials with rubber stoppers and aluminium caps with plastic seals.

6.6 Special precautions for disposal and other handling

Film-coated tablets

No special requirements.

Powder for solution for infusion

The vial contents are reconstituted with 19 mL of Water for Injections to obtain a clear solution containing 10 mg/mL of VFEND and an extractable volume of 20 mL. For administration, the required volume of the reconstituted solution is added to a recommended compatible infusion solution (tabulated below) to obtain, where appropriate, a final VFEND solution containing 0,5 - 5 mg/mL.

Required volumes of 10 mg/mL VFEND concentrate

Body Weight (kg)	3 mg/kg dose	4 mg/kg dose	6 mg/kg dose
	(number of vials)	(number of vials)	(number of vials)
10	-	4,0 mL (1)	-
15	-	6,0 mL (1)	-
20	-	8,0 mL (1)	-
25	-	10,0 mL (1)	-
30	9,0 mL (1)	12 mL (1)	18 mL (1)
35	10,5 mL (1)	14 mL (1)	21 mL (2)
40	12,0 mL (1)	16 mL (1)	24 mL (2)
45	13,5 mL (1)	18 mL (1)	27 mL (2)
50	15,0 mL (1)	20 mL (1)	30 mL (2)
55	16,5 mL (1)	22 mL (2)	33 mL (2)
60	18,0 mL (1)	24 mL (2)	36 mL (2)
65	19,5 mL (1)	26 mL (2)	39 mL (2)
70	21,0 mL (2)	28 mL (2)	42 mL (3)
75	22,5 mL (2)	30 mL (2)	45 mL (3)
80	24,0 mL (2)	32 mL (2)	48 mL (3)
85	25,5 mL (2)	34 mL (2)	51 mL (3)
90	27,0 mL (2)	36 mL (2)	54 mL (3)

95	28,5 mL (2)	38 mL (2)	57 mL (3)
100	30,0 mL (2)	40 mL (2)	60 mL (3)

The reconstituted solution can be diluted with:

- 0,9 % Sodium Chloride intravenous infusion
- Compound Sodium Lactate intravenous infusion
- 5 % Glucose and Compound Sodium Lactate intravenous infusion
- 5 % Glucose and 0,45 % Sodium Chloride intravenous infusion
- 5 % Glucose intravenous infusion
- 5 % Glucose in 20 mmoL Potassium Chloride intravenous infusion
- 0,45 % Sodium Chloride intravenous infusion
- 5 % Glucose and 0,9 % Sodium Chloride intravenous infusion

The compatibility of VFEND with diluents other than those described above is unknown (see section

6.2).

7. HOLDER OF CERTIFICATE OF REGISTRATION

Pfizer Laboratories (Pty) Ltd 85 Bute Lane Sandton 2196 South Africa Tel: +27(0)11 320 6000 / 0860 734 937 (Toll-free South Africa)

8. REGISTRATION NUMBERS

VFEND 50 mg film-coated tablets: 36/20.1.7/0106 VFEND 200 mg film-coated tablets: 36/20.1.7/0107 VFEND IV 200 mg powder for solution for infusion: 36/20.1.7/0108

9. DATE OF FIRST AUTHORISATION

05 September 2003

10. DATE OF REVISION OF THE TEXT

18 April 2024

BOTSWANA: S2

VFEND 50 mg - Reg. No.: BOT1302360

VFEND 200 mg - Reg. No.: BOT1302361

VFEND IV 200 mg - Reg. No.: BOT1202201

NAMIBIA: NS2

VFEND 50 mg - Reg. No.: 06/20.1.7/0245

VFEND 200 mg - Reg. No.: 06/20.1.7/0246

VFEND IV 200 mg - Reg. No.: 06/20.1.7/0244