SCHEDULING STATUS: S4

1. NAME OF THE MEDICINE

MYCOBUTIN[®] 150 mg Capsules

2. QUALITATIVE AND QUANTITATIVE COMPOSITION

Each capsule contains 150 mg rifabutin.

MYCOBUTIN capsules are sugar free.

For the full list of excipients, see section 6.1.

3. PHARMACEUTICAL FORM

Capsule

Red-brown, self-locking, hard gelatin capsule, size 0, containing a violet powder.

4. CLINICAL PARTICULARS

4.1 Therapeutic indications

- Treatment of pulmonary tuberculosis caused by *M. tuberculosis*, proven to be sensitive by laboratory tests to rifabutin and resistant to rifampicin, in combination with other medicines not belonging to the rifamycin group.
- MYCOBUTIN is also effective for infections caused by *M. avium intracellulare complex* (MAC) or *M. xenopi* for the treatment of both disseminated and localised disease and also in immunocompromised HIV-infected patients.
- MYCOBUTIN is also indicated for the prophylactic treatment of infections caused by *M. avium intracellulare complex* (MAC) in patients with advanced HIV infection.

4.2 Posology and method of administration

Posology

MYCOBUTIN can be administered as a single daily dose, independent of meals. In all cases MYCOBUTIN is to be administered in combination regimens.

Newly diagnosed pulmonary tuberculosis with resistance to only rifampicin

1 capsule (150 mg) daily for 6 months.

Chronic, multidrug-resistant pulmonary tuberculosis

2 to 3 capsules (300 – 450 mg) daily for up to 6 months after negative sputum cultures are obtained.

Atypical mycobacterial infections (MAC and M. xenopi)

3 to 4 capsules (450 - 600 mg) daily for up to 6 months after negative cultures are obtained.

Prophylaxis of MAC in patients with advanced HIV infections

2 capsules (300 mg) daily.

The above doses are indicated in adults with a body mass of greater than 35 kg. No specific dosage alterations are proposed in the elderly.

Method of administration

For oral use.

4.3 Contraindications

- Hypersensitivity to rifabutin, other rifamycins (e.g. rifampicin) or any of the excipients of MYCOBUTIN listed in section 6.1.
- HIV-infected patients taking clarithromycin.
- For concomitant medicines not recommended with MYCOBUTIN, see section 4.5.

4.4 Special warnings and precautions for use

MYCOBUTIN may impart a red-orange colour to the urine and possibly to skin and body secretions (saliva,

sputum and tears).

Soft contact lenses

These may be permanently stained by MYCOBUTIN administration.

MYCOBUTIN should always be given in combination with other anti-mycobacterial medicines not belonging to the family of rifamycins.

It is recommended that liver enzymes, white blood cell and platelet counts be monitored during therapy with MYCOBUTIN.

When MYCOBUTIN is used concomitantly with clarithromycin for MAC treatment, a decreased dose of MYCOBUTIN is recommended due to the increase in plasma concentrations of MYCOBUTIN (see sections 4.2 and 4.5). Due to the possible occurrence of uveitis, patients should also be carefully monitored when MYCOBUTIN is given in combination with clarithromycin (or other macrolides) and/or fluconazole (and related compounds). If uveitis is suspected, the patient should be referred to an ophthalmologist and, if considered necessary, treatment with MYCOBUTIN should be suspended (see sections 4.8 and 4.5).

Protease inhibitors act as substrates or inhibitors of cytochrome (CYP)450 3A4 mediated metabolism. Therefore, due to significant interactions between protease inhibitors and MYCOBUTIN, their concomitant use should be based on the overall assessment of the patient and patient-specific medicine profile (see section 4.5).

MYCOBUTIN is a CYP450 3A inducer. Therefore, co-administration with antiretroviral products including but not limited to bictegravir, rilpivirine, or doravirine is not recommended due to the expected decrease in plasma concentrations of the antiretrovirals which may lead to loss of virologic response and possible development of resistance (see Section 4.5).

For further recommendations, please refer to the most recent prescribing information of the antiretrovirals or

contact the specific manufacturer.

Clostridium difficile-associated diarrhoea (CDAD) has been reported with use of MYCOBUTIN, and may range in severity from mild diarrhoea to fatal colitis. Treatment with MYCOBUTIN alters the normal flora of the colon leading to overgrowth of *C. difficile*.

C. difficile produces toxins A and B which contribute to the development of CDAD. Hypertoxin-producing strains of *C. difficile* cause increased morbidity and mortality, as these infections can be refractory to antimicrobial therapy and may require collectomy.

CDAD must be considered in all patients who present with diarrhoea following MYCOBUTIN use. Careful medical history is necessary since CDAD has been reported to occur over two months after the administration of antibacterial medicines such as MYCOBUTIN.

There have been reports of severe cutaneous adverse reactions (SCARs), such as Stevens Johnson syndrome (SJS), toxic epidermal necrolysis (TEN), drug reaction with eosinophilia and systemic symptoms (DRESS), and acute generalized exanthematous pustulosis (AGEP) with anti-tuberculosis medicines (see section 4.8). If patients develop a skin rash they should be monitored closely and suspect medicine(s) discontinued if lesions progress. Identifying the specific medicine is difficult, as multiple anti-tuberculosis medicines are prescribed in association concurrently.

Specifically, for DRESS, a multi-system potential life-threatening SCAR, time to onset of the first symptoms may be prolonged. DRESS is a clinical diagnosis, and its clinical presentation remains the basis for decision making. An early withdrawal of the suspect medicines is essential because of the syndrome's mortality and visceral involvement (e.g., liver, bone marrow or kidney).

Co-administration of ritonavir is not recommended because it substantially increases the plasma concentration of MYCOBUTIN (see section 4.5). High plasma concentrations of MYCOBUTIN may

increase the risk of side effects.

If a patient on MYCOBUTIN develops active tuberculosis, other anti-tuberculosis medicine should be added.

Special populations

Severe hepatic impairment

For patients with severe liver insufficiency a dose reduction should be considered. Mild hepatic impairment does not require a dose modification.

Severe renal impairment (creatinine clearance below 30 mL/min)

A dosage reduction of 50 % is required. Mild to moderate renal impairment does not require any dosage adjustment.

Paediatric population

Safety and efficacy in children and adolescents have not been established.

Excipients

MYCOBUTIN contains less than 1 mmol sodium (23 mg) per capsule, that is to say essentially 'sodium-free'.

4.5 INTERACTION WITH OTHER MEDICINES AND OTHER FORMS OF INTERACTION

Multiple dosing of MYCOBUTIN has been associated with induction of hepatic metabolic enzymes of the CYP450 3A subfamily. MYCOBUTIN's predominant metabolite (25-O-desacetyl rifabutin; LM 565), may also contribute to this effect. Metabolic induction due to MYCOBUTIN is likely to produce a decrease in circulating levels of concomitantly administered medicines (especially those metabolised by the CYP450 3A pathway).

Kinetic data suggest that enzymatic induction by MYCOBUTIN is complete within 5 days and is doseindependent over the 300 to 600 mg dose-range. Similarly, concomitant medicines that competitively inhibit the CYP450 3A activity may increase circulating levels of MYCOBUTIN. Table 1 summarises the results and magnitude of the pertinent medicine interactions assessed with MYCOBUTIN. The clinical relevance of these interactions and subsequent dose modifications should be judged in light of the population studied, severity of the disease, patient's medicine profile, and the likely impact on the risk/benefit ratio.

The following table provides details of the possible effects of co-administration, on MYCOBUTIN and the coadministered medicine and risk-benefit statement.

Co-	Effect on	Effect on co-	Comments
administere	MYCOBUTIN	administered	
d medicines		medicine	
ANTIVIRALS			
Amprenavir	2,9-fold	No significant	A 50 % reduction in the
	increase in	change in kinetics	MYCOBUTIN dose is
	AUC, 2,2-fold		recommended when
	increase in		combined with
	C _{max}		amprenavir. Increased
			monitoring for adverse
			reactions is warranted.
Bictegravir	No data	38 % decrease in	Although not studied,
		AUC	co-administration of
		56 % decrease in	MYCOBUTIN with a
		Cmin	medicine containing
		20 % decrease in	bictegravir/emtricitabine
		C _{max}	/tenofovir alafenamide
			is not recommended
			due to an expected
			decrease in tenofovir

Table 1: MYCOBUTIN interaction studies:

			alafenamide in addition
			to the reported
			reduction in bictegravir.
Delavirdine	No data	Oral clearance	Study conducted in HIV-
		increased 5-fold	1 infected patients.
		resulting in	MYCOBUTIN is not
		significantly lower	recommended for
		mean trough	patients dosed with
		plasma	delavirdine mesylate
		concentrations (18	400 mg every 8 hours.
		\pm 15 to 1,0 \pm 0,7	
		μ M)	
Didanosine	No significant	No significant	
	change in	change in kinetics	
	kinetics	at steady-state	
Doravirine	No data	50% decrease in	If concomitant use is
		AUC	necessary, increase the
		68% decrease in	doravirine dosage as
		C24	instructed in doravirine-
		No significant	containing product
		changes in Cmax	prescribing information.
Fosam-	64 %	35 % increase in	Dosage reduction of
prenavir/	increase in	AUC and 36 %	MYCOBUTIN by at
ritonavir	AUC*	increase in C _{max} , no	least 75 % (to 150 mg
		effect Ctrough	every other day or three
		(amprenavir)	times per week) is
			recommended when
			combined with
			fosamprenavir.

Indinavir	173 %	34 % decrease in	Dose reduction of
	increase in	AUC, 25 %	MYCOBUTIN to half the
	AUC, 134 %	decrease in C _{max}	standard dose and
	increase in		increase of indinavir
	C _{max}		from 800 mg to 1 000
			mg every 8 hours are
			recommended when
			MYCOBUTIN and
			indinavir are co-
			administered.
Lopinavir/	5,7-fold	No significant	Dosage reduction of
ritonavir	increase in	change in lopinavir	MYCOBUTIN by 50 %
	AUC, 3,4 fold	kinetics	of the dose of 300
	increase in		mg/day is
	C _{max} *		recommended (i.e. a
			maximum dose of 150
			mg once daily).
			Increased monitoring for
			adverse reactions e.g.
			nausea, leukopenia,
			uveitis, is warranted.
			Further dosage
			reduction of
			MYCOBUTIN may be
			necessary.
Saquinavir	No data	40 % decrease in	
		AUC	
Rilpivirine	No data	42 % decrease in	Although not studied, co-
		AUC	administration of

		48 % decrease in	MYCOBUTIN with a
		Cmin	medicine containing
		31 % decrease in	rilpivirine/tenofovir
		C _{max}	alafenamide/
			emtricitabine is not
			recommended due to an
			expected decrease in
			tenofovir alafenamide in
			addition to the reported
			reduction in rilpivirine.
Ritonavir	4-fold	No data	In the presence of
	increase in		ritonavir the subsequent
	AUC, 2,5-fold		risk of side effects,
	increase in		including uveitis may be
	C _{max}		increased. If a protease
			inhibitor is required in a
			patient treated with
			rifabutin, medicines
			other than ritonavir
			should be considered
			(see section 4.4).
Tipranavir/	2,9-fold	No significant	Therapeutic medicine
ritonavir	increase in	change in tipranavir	monitoring of
	AUC, 1,7-fold	kinetics	MYCOBUTIN is
	increase in		recommended.
	C _{max}		
Zidovudine	No significant	Approximately	A clinical study has
	change in	32 % decrease in	shown that these
	kinetics	C _{max} and AUC	changes are of no

			clinical relevance.
ANTIFUNGAL			
Fluconazole	82 %	No significant	
	increase in	change in steady-	
	AUC	state plasma	
		concentrations	
Itraconazole	No data	70 – 75 %	One case report
		decrease in C_{max}	suggests a kinetic
		and AUC	interaction resulting in
			an increase in serum
			MYCOBUTIN levels and
			a risk for developing
			uveitis in the presence
			of itraconazole.
Keto-	No data	No data	Co-administration is not
conazole			recommended. If
			concomitant use is
			clinically warranted,
			carefully monitor
			patients for increased
			MYCOBUTIN levels or
			adverse reactions and
			for reduced
			ketoconazole efficacy
Posa-	31 %	43 % decrease in	If the medicines are co-
conazole	increase in	C _{max} , 49 %	administered, patients
	C _{max} , 72 %	decrease in AUC	should be monitored for
	increase in		adverse events
	AUC		associated with

			MYCOBUTIN
			administration.
Voriconazole	195 %	MYCOBUTIN (300	If the benefit outweighs
	increase in	mg once daily)	the risk, MYCOBUTIN
	C _{max} , 331 %	decreased the C_{max}	may be co-administered
	increase in	and AUC of	with voriconazole if the
	AUC **	voriconazole	maintenance dose of
		administered orally	voriconazole is
		at 200 mg twice	increased to 5 mg/kg
		daily by 69 % and	intravenously every 12
		78 %, respectively.	hours or from 200 mg to
		During co-	350 mg orally, every 12
		administration with	hours (100 mg to 200
		MYCOBUTIN, the	mg orally, every 12
		C _{max} and AUC of	hours in patients less
		voriconazole at 350	than 40 kg). Careful
		mg twice daily were	monitoring of full blood
		96 % and 68 % of	counts and adverse
		the levels when	events to MYCOBUTIN
		administered alone	(e.g. uveitis) is
		at 200 mg twice	recommended when
		daily.	MYCOBUTIN is co-
		At a voriconazole	administered with
		dose of 400 mg	voriconazole.
		twice daily, C _{max}	
		and AUC were 104	
		% and 87 % higher,	
	1	l	

		respectively,		
		compared with		
		voriconazole alone		
		at 200 mg twice		
		daily.		
ANTI-PCP (Pr	l neumocystis jirov	/eci pneumonia)		
Dapsone	No data	Approximately	Study conducted in HIV-	
		27 – 40 % decrease	infected patients (rapid	
		in AUC	and slow acetylators).	
Sulfa-	No significant	Approximately 15 –	In another study, only	
methoxazole	change in	20 % decrease in	trimethoprim (not	
-	C_{max} and	AUC	sulfamethoxazole) had	
trimethoprim	AUC		14 % decrease in AUC	
			and 6 % decrease in	
			C _{max} but were not	
			considered clinically	
			significant.	
ANTI-MAC (M	l lycobacterium av	/ium intracellulare com	plex)	
Azithromycin	No phar-	No pharmacokinetic	The combination of	
	macokinetic	interaction	MYCOBUTIN and	
	interaction		azithromycin resulted in	
			a high frequency of	
			adverse effects.	
ANTI-TB (tube	ANTI-TB (tuberculosis)			
Ethambutol	No data	No significant		
		change in AUC or		
		C _{max}		
Isoniazid	No data	Pharmacokinetics		
		not affected		

Pyra-	No data	No data		
zinamide				
OTHER				
Methadone	No data	No significant effect	No apparent effect of	
			MYCOBUTIN on either	
			peak levels of	
			methadone or systemic	
			exposure based upon	
			AUC. MYCOBUTIN	
			kinetics not evaluated.	
Oral contra-	No data	No data	Contraceptive cover	
ceptives			may not be adequate	
			during concomitant	
			therapy with	
			MYCOBUTIN; therefore,	
			patients should be	
			advised to use other	
			methods of	
			contraception.	
Tacrolimus	No data	No data	MYCOBUTIN decreases	
			tacrolimus trough blood	
			levels.	
Theophylline	No data	No significant		
		change in AUC or		
		C _{max} compared with		
		baseline		
AUC – Area u	AUC – Area under the concentration vs. time curve			
C _{max} – Maximu	C _{max} – Maximum serum concentration			
* Medicine plus active metabolite				

** Voriconazole dosed at 400 mg twice daily

4.6 Fertility, pregnancy and lactation

Safety in pregnancy and lactation has not been established.

4.7 Effects on ability to drive and use machines

MYCOBUTIN is not expected to have any adverse effects on the ability to drive and use machines.

4.8 Undesirable effects

The tolerability of MYCOBUTIN in multiple medicine regimens has been assessed in long-term studies with daily dosages up to 600 mg in both immunocompetent and immunocompromised patients, suffering from tuberculosis and non-tuberculous mycobacteriosis.

MYCOBUTIN was often given in the studies in tuberculosis as part of a multi-medicine regimen, and it was not always possible to define with certainty a medicine-event relationship.

Tabulated summary of adverse reactions

Side effects identified through clinical trials or post-marketing surveillance by system organ class are listed below.

The table below contains side effects categorised as follows utilising the incidence rates: very common (\geq 1/10), common (\geq 1/100 to < 1/10); uncommon (\geq 1/1 000 to < 1/100); rare (\geq 1/10 000 to < 1/1 000); very rare (< 1/10 000).

MedDRA	Frequency	Undesirable effects
system organ		
class		
Blood and	Very common	Leukopenia

lymphatic system	Common	Anaemia
disorders	Uncommon	Pancytopenia, thrombocytopenia,
		eosinophilia
Immune system	Uncommon	Hypersensitivity
disorders		
Eye disorders	Uncommon	Corneal deposits
Gastrointestinal	Common	Nausea, vomiting
disorders		
Hepato-biliary	Common	Increased hepatic enzymes
disorders	Uncommon	Jaundice
Skin and	Common	Rash
subcutaneous	Uncommon	Skin pigmentation/ discolouration
tissue disorders		
Musculoskeletal	Common	Myalgia
and connective	Uncommon	Arthralgia
tissue disorders		
General disorders	Common	Pyrexia
and		
administration site		
conditions		

The frequency and severity of haematologic reactions could be increased by combined administration of isoniazid.

Anti-tuberculosis medicine SCARs

Anti-tuberculosis medicine use may lead to the occurrence of medicine reaction with eosinophilia and systemic symptoms (DRESS) as well as other SCARs such as SJS, TEN, and AGEP (see section 4.4).

Post-marketing experience

Skin discolouration has been reported. Mild to severe, reversible uveitis has been reported when MYCOBUTIN was used at 300 mg as monotherapy in MAC prophylaxis. MYCOBUTIN in combination with clarithromycin

for MAC treatment was more frequently associated with uveitis (see section 4.4). Corneal deposits have been reported during routine ophthalmologic surveillance of HIV-positive paediatric patients receiving MYCOBUTIN as part of a multiple medicine regimen for MAC prophylaxis. The deposits are tiny, almost transparent, asymptomatic peripheral and central corneal deposits, and do not impair vision.

Anaphylactic shock has occurred with other antibiotics of the same class.

MedDRA	Side effects
system organ class	
Blood and lymphatic system	Agranulocytosis, lymphopenia,
disorders	granulocytopenia, neutropenia, decreased
	white blood cell count, decreased neutrophil
	count, decreased platelet count
Immune system disorders	Bronchospasm
Eye disorders	Uveitis
Gastrointestinal disorders	Clostridium difficile colitis, tongue
	discolouration, tooth discolouration
Hepato-biliary disorders	Abnormal hepatic function
Skin and subcutaneous tissue	Erythema/ dermatitis
disorders	
Investigations	Increased alkaline phosphatase/ALT/AST

The table below contains side effects from post-marketing data.

Reporting of suspected adverse reactions

Reporting suspected adverse reactions after authorisation of the medicine is important. It allows continued monitoring of the benefit/risk balance of the medicine. Health care providers are asked to report any suspected adverse reactions to SAHPRA via the **"6.04 Adverse Drug Reactions Reporting Form"**, found online under SAHPRA's publications:

https://www.sahpra.org.za/Publications/Index/8

4.9 Overdose

Symptoms as under section 4.8. Supportive care and symptomatic treatment are indicated.

5. PHARMACOLOGICAL PROPERTIES

5.1 Pharmacodynamic properties

Category and class: A 20.1.1 Broad and medium spectrum antibiotics

Rifabutin is a semi-synthetic ansamycin antibiotic. It inhibits incorporation of thymidine into DNA of *M. tuberculosis*.

In vitro activity of rifabutin against laboratory strains and clinical isolates of *M. tuberculosis* has been shown to be very high.

Rifabutin was seen to be active against non-tuberculous (atypical) mycobacteria including *M. avium-intracellulare* (MAC) *in vitro* as well as in experimental infections caused by these pathogens in immunodeficient mice.

5.2 Pharmacokinetic properties

In man, rifabutin peak plasma levels are reached around 2 to 4 hours after oral administration. The pharmacokinetics of rifabutin is linear after single dose administration of 300, 450 and 600 mg to healthy volunteers. With these doses, C_{max} is in the range of 0,4 to 0,7 µg/mL. Plasma concentrations are maintained above the MIC values for *M. tuberculosis* up to about 30 hours from administration. In animals, rifabutin is widely distributed in various organs with the exception of the brain.

Rifabutin and its metabolites are eliminated mainly by the urinary route. Of the five metabolites that have been identified, the 25-O-desacetyl derivative and the 31-hydroxyl derivative are the most predominant. The former has an antibacterial activity equal to the parent medicine. The elimination half-life of rifabutin in man is approximately 35 – 40 hours.

6. PHARMACEUTICAL PARTICULARS

6.1 List of excipients

Gelatine

Magnesium stearate

Microcrystalline cellulose

Red iron oxide

Silica gel

Sodium lauryl sulphate

Titanium dioxide

6.2 Incompatibilities

Not applicable.

6.3 Shelf life

24 months.

6.4 Special precautions for storage

Store at or below 25 °C.

Protect from light and moisture.

6.5 Nature and contents of container

Transparent PVC/aluminium blisters in packs containing 30 and 100 capsules.

Not all pack sizes may be marketed.

6.6 Special precautions for disposal and other handling

No special requirements.

7. HOLDER OF CERTIFICATE OF REGISTRATION

Pfizer Laboratories (Pty) Ltd

85 Bute Lane

Sandton 2196

South Africa

Tel: +27(0)11 320 6000 / 0860 734 937 (Toll-free South Africa)

8. REGISTRATION NUMBER

Z/20.1.1/395

9. DATE OF FIRST AUTHORISATION

28 January 1994

10. DATE OF REVISION OF THE TEXT

24 April 2024

Manufacturer:

Pfizer Italia S.r.l., Ascoli Piceno, Italy

BOTSWANA: S2

Reg. No.: BOT1302406A (30 Caps)

Reg. No.: BOT1302406B (100 Caps)

NAMIBIA: S4

Reg. No.: 06/20.1.1/0255